This paper describes an offline handwriting recognition system for Amharic words based on lexicon. The system computes direction fields of scanned handwritten documents, from which pseudo-characters are segmented. The pseudo-characters are organized based on their proximity and direction to form text lines. Words are then segmented by analyzing the relative gap between subsequent pseudocharacters in text lines. For each segmented word image, the structural characteristics of pseudo-characters are syntactically analyzed to predict a set of plausible characters forming the word. The most likelihood word is finally selected among candidates by matching against the lexicon. The system is tested by a database of unconstrained handwritten Amharic documents collected from various sources. The lexicon is prepared from words appearing in the collected database.