hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Complementing 3D Roughness Parameters for Monitoring of Improved Honing of Cylinder Bores
Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.ORCID iD: 0000-0003-3149-4296
Volvo Car Corporation, Göteborg, Sweden.
Volvo Power Train Corp., Volvo Group, Göteborg, Sweden.
Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.ORCID iD: 0000-0001-8058-1252
2008 (English)In: Proceedings of the Swedish Production Symposium (SPS) - 2008, 2008Conference paper, Published paper (Refereed)
Abstract [en]

It is of common interest to reduce the oil consumption and frictional losses in the internal combustion engines which are in a great deal influenced by the quality of the cylinder liner surface. Its criss-cross patterned topography consists of a communicating system of grooves of different density, width, and depth, somewhere covered by folded metal, and somewhere totally interrupted and unbalanced as a result of the honing process imperfections. These features are crucial for a good liner’s function and are inspected from scanning electron microscope images by experts, which is subjective and time consuming process. Today, a fast automatic quality control is possible by using optical instruments to measure the liner’s topography, and a computer to calculate and check if the standard roughness and groove parameters are in tolerance. Therefore, combining the profile and image analysis, algorithms were developed to compute liner’s groove parameters from 3D interference measurements taken from three different types of cylinder bore surfaces of passenger cars. One of the surface types was a result of a test of an improved honing and the other two being currently in use. Then, the standard and new parameters (groove interruption, number of grooves, holes, etc) were incorporated in a characterisation tool to objectively and quickly evaluate the improvement of the liner’s quality for an updated monitoring in production.

Place, publisher, year, edition, pages
2008.
Keywords [en]
Cylinder Bores, Surface Roughness, Automated Quality Control
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:hh:diva-3604ISBN: 978-3-939026-95-2 OAI: oai:DiVA.org:hh-3604DiVA, id: diva2:280600
Conference
2nd Swedish Production Symposium, Stockholm, Sweden, 18-20 November 2008
Available from: 2009-12-10 Created: 2009-12-10 Last updated: 2018-03-23Bibliographically approved
In thesis
1. Surfaces of Honed Cylinder Liners
Open this publication in new window or tab >>Surfaces of Honed Cylinder Liners
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cylinder liner surfaces are often on the agenda of engine developers because of their large influence on the frictional losses, oil consumption and emissions of internal combustion engines. Improving the liner function involves not only manufacturing new surfaces and checking their function but also characterising them as a necessary intermediate step for better understanding of the changes made. In the manufacturing of the liners, honing is a well adapted and widely used finishing process and along with the characterisation and function has been the subject of studies in this thesis. Regarding the liner’s function, three phenomena were monitored: wear, friction and oil passage rate (correlated with engine’s oil consumption). The first one was studied experimentally while the other two were simulated. Only the interactions with the twin land oil control ring were simulated as it has the greatest influence on the control of friction and oil consumption of all other rings. In the mid-stroke region of truck engine liners, the presence of axial wear scratches was observed and their relation with the removal of the cold worked material (“Blechmantel”) folded inside the deep honing grooves was investigated. Algorithms were developed for estimating the extent of Blechmantel, revealing that most of it remained on the surface whereas the engines still performed well. Other algorithms for characterising honing angle, balance of honing texture, width, height, distance between honing grooves/axial wear scratches, etc were developed for quicker and more objective inspection of unworn and worn surfaces from 3D interference measurements. Based on such 3D measurements, the algorithms were incorporated in a characterisation tool enabling rating of the surfaces and determining the number of measurements necessary to achieve stable roughness parameter values. In addition, it was found that interference measurements are more suitable for quantification of the deposits on the worn truck liner surfaces compared with scanning electron microscope measurements. The lubrication and friction of flat oil control ring lands and differently slide honed surfaces of truck liners were simulated. Friction mean effective pressure and oil passage rate were calculated for each surface showing in each case a reduction for the surfaces with smoother plateaus and smaller valleys. Such a liner surface was finished by using a low base honing pressure and a longer plateau honing time. In a car engine, the influence of different liner surfaces, ring land widths and tensions was examined by running simulations. The results suggest that a considerably improved function can be achieved if the ring land width and tension are reduced whereby the differences between the liner surfaces would reduce.

Place, publisher, year, edition, pages
Göteborg: Chalmers University of Technology, 2011. p. 75
Series
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie, ISSN 0346-718X ; 3186
Keywords
Honing, Characterisation, Blechmantel, Groove Parameters, Quality Control, Oil Consumption, Wear, Friction, Mixed Lubrication Simulation
National Category
Manufacturing, Surface and Joining Technology
Identifiers
urn:nbn:se:hh:diva-14649 (URN)978-91-7385-505-1 (ISBN)
Public defence
2011-03-18, EA, Hörsalsv. 11, Göteborg, 10:00 (English)
Opponent
Supervisors
Available from: 2011-03-28 Created: 2011-03-25 Last updated: 2014-03-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Dimkovski, ZlateAnderberg, CeciliaRosén, Bengt-Göran

Search in DiVA

By author/editor
Dimkovski, ZlateAnderberg, CeciliaRosén, Bengt-Göran
By organisation
Functional Surfaces
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 279 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf