hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Quantification of the cold worked material inside the deep honing grooves on cylinder liner surfaces and its effect on wear
Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.ORCID iD: 0000-0003-3149-4296
Volvo Car Corporation, Göteborg, Sweden.
Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.ORCID iD: 0000-0001-8058-1252
Volvo Power Train Corp., Volvo Group, Göteborg, Sweden.
Show others and affiliations
2009 (English)In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 267, no 12, p. 2235-2242Article in journal (Refereed) Published
Abstract [en]

The increased presence of cold work material on cylinder liners due to the introduction of the diamond honing is undesirable as it seals the oil-bearing honing grooves. The most of it is a smeared metal inside the deep honing grooves (blechmantel) that may break and act as abrasive wear particles increasing the bore wear. An attempt has been made to estimate the extent of removal of blechmantel for different wear regimes present at the middle and top region (near the top dead centre) of the liner surface using the least worn bottom region as a reference for comparison. A number of truck grey iron cylinder liners were axially sectioned after varying periods of engine running under similar conditions of load, engine speed and lubrication. 3D surface measurements were taken at the three regions and a range of standard parameters was extracted. Combining the profile and image analysis, an algorithm was developed to identify and quantify the blechmantel. The algorithm has successfully identified/quantified the blechmantel and can be used for automatic surface quality and process control. It was found that the amount of the blechmantel in the middle section was approximately the same (though slightly lower) as that in the bottom section, while there was a considerable dislocation and removal of blechmantel in the top section and thereby it represents one of the possible causes for wear. Axial wear scratches of different size and distribution were observed not only through the whole stroke area, but also in the bottom region. All engines and liners performed well throughout the tests, and the observed quantities of blechmantel and axial scratches are acceptable for the time being.

Place, publisher, year, edition, pages
Amsterdam: Elsevier, 2009. Vol. 267, no 12, p. 2235-2242
Keywords [en]
Cold work quantification; Cylinder liner wear; Surface topography; Engine tests; Diamond honing
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:hh:diva-3603DOI: 10.1016/j.wear.2009.06.008ISI: 000272810200012Scopus ID: 2-s2.0-71849087389OAI: oai:DiVA.org:hh-3603DiVA, id: diva2:280598
Available from: 2009-12-10 Created: 2009-12-10 Last updated: 2018-03-23Bibliographically approved
In thesis
1. Surfaces of Honed Cylinder Liners
Open this publication in new window or tab >>Surfaces of Honed Cylinder Liners
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cylinder liner surfaces are often on the agenda of engine developers because of their large influence on the frictional losses, oil consumption and emissions of internal combustion engines. Improving the liner function involves not only manufacturing new surfaces and checking their function but also characterising them as a necessary intermediate step for better understanding of the changes made. In the manufacturing of the liners, honing is a well adapted and widely used finishing process and along with the characterisation and function has been the subject of studies in this thesis. Regarding the liner’s function, three phenomena were monitored: wear, friction and oil passage rate (correlated with engine’s oil consumption). The first one was studied experimentally while the other two were simulated. Only the interactions with the twin land oil control ring were simulated as it has the greatest influence on the control of friction and oil consumption of all other rings. In the mid-stroke region of truck engine liners, the presence of axial wear scratches was observed and their relation with the removal of the cold worked material (“Blechmantel”) folded inside the deep honing grooves was investigated. Algorithms were developed for estimating the extent of Blechmantel, revealing that most of it remained on the surface whereas the engines still performed well. Other algorithms for characterising honing angle, balance of honing texture, width, height, distance between honing grooves/axial wear scratches, etc were developed for quicker and more objective inspection of unworn and worn surfaces from 3D interference measurements. Based on such 3D measurements, the algorithms were incorporated in a characterisation tool enabling rating of the surfaces and determining the number of measurements necessary to achieve stable roughness parameter values. In addition, it was found that interference measurements are more suitable for quantification of the deposits on the worn truck liner surfaces compared with scanning electron microscope measurements. The lubrication and friction of flat oil control ring lands and differently slide honed surfaces of truck liners were simulated. Friction mean effective pressure and oil passage rate were calculated for each surface showing in each case a reduction for the surfaces with smoother plateaus and smaller valleys. Such a liner surface was finished by using a low base honing pressure and a longer plateau honing time. In a car engine, the influence of different liner surfaces, ring land widths and tensions was examined by running simulations. The results suggest that a considerably improved function can be achieved if the ring land width and tension are reduced whereby the differences between the liner surfaces would reduce.

Place, publisher, year, edition, pages
Göteborg: Chalmers University of Technology, 2011. p. 75
Series
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie, ISSN 0346-718X ; 3186
Keywords
Honing, Characterisation, Blechmantel, Groove Parameters, Quality Control, Oil Consumption, Wear, Friction, Mixed Lubrication Simulation
National Category
Manufacturing, Surface and Joining Technology
Identifiers
urn:nbn:se:hh:diva-14649 (URN)978-91-7385-505-1 (ISBN)
Public defence
2011-03-18, EA, Hörsalsv. 11, Göteborg, 10:00 (English)
Opponent
Supervisors
Available from: 2011-03-28 Created: 2011-03-25 Last updated: 2014-03-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Dimkovski, ZlateAnderberg, CeciliaRosén, Bengt-GöranThomas, Tom

Search in DiVA

By author/editor
Dimkovski, ZlateAnderberg, CeciliaRosén, Bengt-GöranThomas, Tom
By organisation
Functional Surfaces
In the same journal
Wear
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 228 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf