hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of vegetation state on biodiversity and nitrogen retention in created wetlands: a test of the biodiversity–ecosystem functioning hypothesis
Halmstad University, School of Business and Engineering (SET), Biological and Environmental Systems (BLESS), Wetland Research Centre.ORCID iD: 0000-0002-5181-0391
Halmstad University, School of Business and Engineering (SET), Biological and Environmental Systems (BLESS), Wetland Research Centre.
2010 (English)In: Freshwater Biology, ISSN 0046-5070, E-ISSN 1365-2427, Vol. 55, no 2, p. 387-396Article in journal (Refereed) Published
Abstract [en]

1. Nitrogen retention in wetlands provides an example of an ecosystem function that is desired by human society, and is a rationale for the creation of wetlands to decrease nitrogen fluxes from nitrate-loaded river catchments to coastal waters.

2. Here, we tested the impact of different vegetation states on species diversity and nitrogen retention during 4 years in surface-flow wetlands receiving nitrate-rich water. Tall emergent vegetation or submerged vegetation was introduced to six experimental wetlands each and six wetlands were left as unplanted controls for free development of vegetation. This resulted in three vegetation states dominated by emergent vegetation, by a mixture of submerged vegetation and filamentous green algae or by filamentous green algae.

3. Species diversity (species richness and Shannon diversity) of plants was initially lowest in free development wetlands, but during the study became lower in the emergent vegetation wetlands than in the other wetlands. Diversity of macroinvertebrates was initially lower in the submerged vegetation wetlands than in the other wetlands, but this difference disappeared during the study. Nitrogen retention was consistently higher in emergent vegetation wetlands than in the other wetlands throughout the study.

4. We conclude that plant diversity in wetlands dominated by tall emergent vegetation gradually became lower than in other wetlands, due to dominant species competitively excluding other plants. However, these wetlands were more efficient at removing nitrogen than those dominated by filamentous algae or submerged macrophytes.

5. Management of wetlands often aims to decrease the dominance of tall emergent vegetation for the benefit of plant species diversity and habitat heterogeneity. Our results demonstrate a biodiversity benefit, but also show that this strategy may decrease the ability of wetlands to remove nitrogen. In this case, there is no support for the hypothesis that biodiversity enhances ecosystem function.

Place, publisher, year, edition, pages
Oxford: Blackwell Publishing, 2010. Vol. 55, no 2, p. 387-396
Keywords [en]
Benthic macroinvertebrates, Constructed wetlands, Ecosystem functioning, Macrophytes, Species richness
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:hh:diva-2964DOI: 10.1111/j.1365-2427.2009.02288.xISI: 000273602500009Scopus ID: 2-s2.0-74049160776Local ID: 2082/3367OAI: oai:DiVA.org:hh-2964DiVA, id: diva2:240182
Available from: 2009-09-14 Created: 2009-09-14 Last updated: 2018-03-23Bibliographically approved
In thesis
1. Biodiversity and ecosystem functioning in created agricultural wetlands
Open this publication in new window or tab >>Biodiversity and ecosystem functioning in created agricultural wetlands
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This doctoral dissertation was produced in a cooperation between Halmstad University (Wetland Research Centre, School of Business and Engineering) and Lund University (Limnology & Marine Biology, Department of Ecology).

Abstract . Wetland creation at large, regional scales is implemented as a measure to abate the biodiversity loss in agricultural landscapes and the eutrophication of watersheds and coastal areas by non-point source nutrient pollution (mainly nitrogen). The consequences of creating many new wetlands for biodiversity conservation and nutrient reten- tion (ecosystem functioning) in agricultural landscapes are still relatively unknown, both on local (per wetland) and regional (per landscape) scales. In Sweden, wetland creation has progressed already since the 1990s, and by now larger numbers of created wetlands are present, mainly in the intensively farmed landscapes of southwestern Sweden. This thesis aimed to investigate the following aspects in these systems: (i) their large-scale effects on biodiversity, (ii) their functional diversity of bacterial denitrifiers, (iii) the abiotic and biotic influences on wetland ecosystem functioning, (iv) the potential for biodiversity-function links, and (v) the potential for functional links and joint functioning.(i) Created wetlands hosted diverse assemblages of macroinvertebrates and plants. They maintained a similar com- position and diversity as natural ponds in agricultural landscapes. The environmental conditions per wetland did hardly affect macroinvertebrate and plant assemblages, and the prerequisites for nutrient retention did neither. In landscapes were wetland creation efforts had increased the total density of small water bodies by more than 30%, macroinver- tebrate diversity of created wetlands was facilitated on both local and regional scales. (ii) Diverse communities of denitrifying bacteria with the capacity for conducting different denitrification steps (functional types) were present in all investigated wetlands. The richness of denitrifying bacteria communities was affected by nitrate concentration and hydraulic loading rate, which may potentially be relevant for the nitrogen retention function of created wetlands. The diversity across different functional types of bacterial denitrifiers increased with nitrate concentration. (iii) Both abiotic and biotic factors influenced ecosystem functions of created wetlands. Variation in nitrogen retention was associated to nitrate load, but even to vegetation parameters. In wetlands with constant nitrate load, planted emergent vegetation facilitated nitrogen retention compared to other vegetation types. In wetlands with variable loads, nitrogen retention was facilitated if nitrate load was high and many different vegetation types were present; nitrogen load could explain the majority of the variation in nitrogen retention compared to vegetation parameters. Phosporus retention of created wetlands was best explained by vegetation parameters. Litter decomposition was inhibited at high nitrate to phosphorus ratios. Methane production increased with age and decreased with plant cover. (iv) Biodiversity may facilitate wetland ecosystem functions, particularly in dynamic wetland ecosystems. Nitrogen retention increased with vegetation type diversity, phosphorus retention capacity with plant richness, and litter decomposition with macroinvertebrate diversity. (v) Created wetlands have the capacity of sustaining several parallel ecosystem services. Some wetland functions were coupled; nitrogen retention increased with fast litter decomposition. On the other hand, methane emission and nitro- gen retention were independent of each other, as were nitrogen and phosphorus retention.In conclusion, created wetlands have the potential to at least partly abate the lost biodiversity and multifunctionality caused by the past extensive destruction of natural wetlands in agricultural landscapes.

Place, publisher, year, edition, pages
Lund: Lund University, 2009. p. 145
Keywords
constructed ponds, eutrophication abatement, biodiversity conservation, functional diversity, macroinvertebrates, plants, bacterial denitrification, watershed scale, nitrogen removal, phosphorus retention
National Category
Ecology
Identifiers
urn:nbn:se:hh:diva-2968 (URN)2082/3371 (Local ID)978-91-7105-295-7 (ISBN)2082/3371 (Archive number)2082/3371 (OAI)
Public defence
(English)
Supervisors
Note

[Paper II] Milenkovski S., Thiere G., Weisner S.E.B., Berglund O. & Lindgren P.-E. Variation of eubacterial and denitrifying bacterial biofilm communities among constructed wetlands. Submitted manuscript. [Paper V] Thiere G. & Weisner S.E.B. Influence of biotic and abiotic parameters on ecosystem functioning of created wetlands. Manuscript.

Available from: 2009-09-17 Created: 2009-09-17 Last updated: 2018-03-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Weisner, Stefan E.B.Thiere, Geraldine

Search in DiVA

By author/editor
Weisner, Stefan E.B.Thiere, Geraldine
By organisation
Wetland Research Centre
In the same journal
Freshwater Biology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 318 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf