hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theory of a room-temperature silicon quantum dot device as a sensitive electrometer
Physical Electron. Photonics Group, University of Göteborg, Chalmers University of Technology, S-412 96 Göteborg, Sweden.
Physical Electron. Photonics Group, University of Göteborg, Chalmers University of Technology, S-412 96 Göteborg, Sweden.
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).ORCID iD: 0000-0001-5027-1456
Physical Electron. Photonics Group, University of Göteborg, Chalmers University of Technology, S-412 96 Göteborg, Sweden.
Show others and affiliations
2004 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 95, no 1, p. 323-326Article in journal (Refereed) Published
Abstract [en]

We consider theoretically the use of a room-temperature silicon quantum dot based device for electrometer applications. The low power device includes two split gates that quantize the electronic energy levels in the emitter and collector regions. The base consists of a silicon quantum dot buried in silicon dioxide. The small size of the dotand quantization of the states in the leads combined to allow the device to operate at room temperature. The nonlinear current-voltage characteristics can be significantly altered by small changes to the potential of the split gates. Power dissipation in the device therefore changes with the split gate voltage, and this can be exploited in electrometerapplications. A simple model of the power dissipated when the device is part of a microwave resonant inductor-resistor-capacitor tank circuit suggests that large changes indevice power can be achieved by changing the gate voltage, thereby forming a measurable signal. We also demonstrate that the power dissipation in the device changes as the base width is varied, and that the current through the device increases exponentially with a decrease in base width. (©2004 American Institute of Physics)

Place, publisher, year, edition, pages
Melville, NY: American Institute of Physics (AIP), 2004. Vol. 95, no 1, p. 323-326
Keywords [en]
Electrometer, Energy levels, Silicon, Temperature, Quantum dots
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:hh:diva-204DOI: 10.1063/1.1625095ISI: 000187341900050Scopus ID: 2-s2.0-0942290065Local ID: 2082/489OAI: oai:DiVA.org:hh-204DiVA, id: diva2:237382
Available from: 2006-11-23 Created: 2006-11-23 Last updated: 2018-04-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Pettersson, Håkan

Search in DiVA

By author/editor
Pettersson, Håkan
By organisation
Halmstad Embedded and Intelligent Systems Research (EIS)
In the same journal
Journal of Applied Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 74 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf