hh.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Improving Concordance Index in Regression-based Survival Analysis: Discovery of Loss Function for Neural Networks
Halmstad University, School of Information Technology.ORCID iD: 0000-0002-6040-2269
Halmstad University, School of Information Technology.ORCID iD: 0000-0001-9416-5647
Halmstad University, School of Information Technology.ORCID iD: 0000-0003-3272-4145
Halmstad University, School of Information Technology.ORCID iD: 0000-0001-5163-2997
Show others and affiliations
2024 (English)In: GECCO '24 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion, New York: Association for Computing Machinery (ACM), 2024, p. 1863-1869Conference paper, Published paper (Other academic)
Abstract [en]

In this work, we use an Evolutionary Algorithm (EA) to discover a novel Neural Network (NN) regression-based survival loss function with the aim of improving the C-index performance. Our contribution is threefold; firstly, we propose an evolutionary meta-learning algorithm SAGA$_{loss}$ for optimizing a neural-network regression-based loss function that maximizes the C-index; our algorithm consistently discovers specialized loss functions that outperform MSCE. Secondly, based on our analysis of the evolutionary search results, we highlight a non-intuitive insight that signifies the importance of the non-zero gradient for the censored cases part of the loss function, a property that is shown to be useful in improving concordance. Finally, based on this insight, we propose MSCE$_{Sp}$, a novel survival regression loss function that can be used off-the-shelf and generally performs better than the Mean Squared Error for censored cases. We performed extensive experiments on 19 benchmark datasets to validate our findings. © 2024 is held by the owner/author(s).

Place, publisher, year, edition, pages
New York: Association for Computing Machinery (ACM), 2024. p. 1863-1869
Keywords [en]
evolutionary meta-learning, loss function, neural networks, survival analysis, regression
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:hh:diva-52468DOI: 10.1145/3638530.3664129Scopus ID: 2-s2.0-85200800944&ISBN: 979-8-4007-0495-6 (print)OAI: oai:DiVA.org:hh-52468DiVA, id: diva2:1831064
Conference
The Genetic and Evolutionary Computation Conference, Melbourne, Australia, July 14-18, 2024
Note

Som manuscript i avhandling/As manuscript in thesis

Available from: 2024-01-24 Created: 2024-01-24 Last updated: 2025-01-09Bibliographically approved
In thesis
1. Evolving intelligence: Overcoming challenges for Evolutionary Deep Learning
Open this publication in new window or tab >>Evolving intelligence: Overcoming challenges for Evolutionary Deep Learning
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Deep Learning (DL) has achieved remarkable results in both academic and industrial fields over the last few years. However, DL models are often hard to design and require proper selection of features and tuning of hyper-parameters to achieve high performance. These selections are tedious for human experts and require substantial time and resources. A difficulty that encouraged a growing number of researchers to use Evolutionary Computation (EC) algorithms to optimize Deep Neural Networks (DNN); a research branch called Evolutionary Deep Learning (EDL).

This thesis is a two-fold exploration within the domains of EDL, and more broadly Evolutionary Machine Learning (EML). The first goal is to makeEDL/EML algorithms more practical by reducing the high computational costassociated with EC methods. In particular, we have proposed methods to alleviate the computation burden using approximate models. We show that surrogate-models can speed up EC methods by three times without compromising the quality of the final solutions. Our surrogate-assisted approach allows EC methods to scale better for both, expensive learning algorithms and large datasets with over 100K instances. Our second objective is to leverage EC methods for advancing our understanding of Deep Neural Network (DNN) design. We identify a knowledge gap in DL algorithms and introduce an EC algorithm precisely designed to optimize this uncharted aspect of DL design. Our analytical focus revolves around revealing avant-garde concepts and acquiring novel insights. In our study of randomness techniques in DNN, we offer insights into the design and training of more robust and generalizable neural networks. We also propose, in another study, a novel survival regression loss function discovered based on evolutionary search.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2024. p. 32
Series
Halmstad University Dissertations ; 109
Keywords
neural networks, evolutionary deep learning, evolutionary machine learning, feature selection, hyperparameter optimization, evolutionary computation, particle swarm optimization, genetic algorithm
National Category
Computer Systems Signal Processing
Identifiers
urn:nbn:se:hh:diva-52469 (URN)978-91-89587-31-1 (ISBN)978-91-89587-32-8 (ISBN)
Public defence
2024-02-16, Wigforss, Kristian IV:s väg 3, Halmstad, 08:00 (English)
Opponent
Supervisors
Available from: 2024-01-24 Created: 2024-01-24 Last updated: 2024-03-07
2. Towards Trustworthy Survival Analysis with Machine Learning Models
Open this publication in new window or tab >>Towards Trustworthy Survival Analysis with Machine Learning Models
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Survival Analysis is a major sub-field of statistics that studies the time to an event, like a patient's death or a machine's failure. This makes survival analysis crucial in critical applications like medical studies and predictive maintenance. In such applications, safety is critical creating a demand for trustworthy models. Machine learning and deep learning techniques started to be used, spurred by the growing volume of collected data. While this direction holds promise for improving certain qualities, such as model performance, it also introduces new challenges in other areas, particularly model explainability. This challenge is general in machine learning due to the black-box nature of most machine learning models, especially deep neural networks (DNN). However, survival models usually output functions rather than point estimates like regression and classification models which makes their explainability even more challenging task. 

Other challenges also exist due to the nature of time-to-event data, such as censoring. This phenomenon happens due to several reasons, most commonly due to the limited study time, resulting in a considerable number of studied subjects not experiencing the event during the study. Moreover, in industrial settings, recorded events do not always correspond to actual failures. This is because companies tend to replace machine parts before their failure due to safety or cost considerations resulting in noisy event labels. Censoring and noisy labels create a challenge in building and evaluating survival models.    

This thesis addresses these challenges by following two tracks, one focusing on explainability and the other on improving performance. The two tracks eventually merge providing an explainable survival model while maintaining the performance of its black-box counterpart.

In the explainability track, we propose two post-hoc explanation methods based on what we define as Survival Patterns. These are patterns in the predictions of the survival model that represent distinct survival behaviors in the studied population. We propose an algorithm for discovering the survival patterns upon which the two post-hoc explanation methods rely. The first method, SurvSHAP, utilizes a proxy classification model that learns the relationship between the input space and the discovered survival patterns. The proxy model is then explained using the SHAP method resulting in per-pattern explanations. The second post-hoc method relies on finding counterfactual explanations that would change the decision of the survival model from one source survival pattern to another. The algorithm uses Particle Swarm Optimization (PSO) with a tailored objective function to guarantee certain explanation qualities in plausibility and actionability.

On the performance track, we propose a Variational Encoder-Decoder model for estimating the survival function using a sampling-based approach. The model is trained using a regression-based objective function that accounts for censored instances assisted with a differentiable lower bound of the concordance index (C-index). In the same work, we propose a decomposition of the C-index where we found out that it can be expressed as a weighted harmonic average of two quantities; one quantifies the concordance among the observed event cases and the other quantifies the concordance between observed events and censored cases. The two quantities are weighted by a factor that balances the contribution of event and censored cases to the total C-index. Such decomposition uncovers hidden differences among survival models that seem equivalent based on the C-index. We also used genetic programming to search for a regression-based loss function for survival analysis with an improved concordance ability. The search results uncovered an interesting phenomenon, upon which we propose the use of the continuously differentiable Softplus function instead of the sharp-cut Relu function for handling censored cases. Lastly in the performance track, we propose an algorithm for correcting erroneous observed event labels that can be caused by preventive maintenance activities. The algorithm adopts an iterative expectation-maximization-like approach utilizing a genetic algorithm to search for better event labels that can maximize a surrogate survival model's performance.

Finally, the two tracks merge and we propose CoxSE a Cox-based deep neural network model that provides inherent explanations while maintaining the performance of its black-box counterpart. The model relies on the Self-Explaining Neural Networks (SENN) and the Cox Proportional Hazard formulation. We also propose CoxSENAM, an enhancement to the Neural Additive Model (NAM) by adopting the NAM structure along with the SENN loss function and type of output. The CoxSENAM model demonstrated better explanations than the NAM-based model with enhanced robustness to noise.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2025. p. 29
Series
Halmstad University Dissertations ; 128
National Category
Computer Sciences Information Systems
Identifiers
urn:nbn:se:hh:diva-55202 (URN)978-91-89587-72-4 (ISBN)978-91-89587-73-1 (ISBN)
Public defence
2025-01-31, S3030, Högskolan i Halmstad, Kristian IV:s väg 3, Halmstad, 09:00 (English)
Opponent
Supervisors
Available from: 2025-01-10 Created: 2025-01-08 Last updated: 2025-01-10Bibliographically approved
3.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Altarabichi, Mohammed GhaithAlabdallah, AbdallahPashami, SepidehRögnvaldsson, ThorsteinnNowaczyk, SławomirOhlsson, Mattias

Search in DiVA

By author/editor
Altarabichi, Mohammed GhaithAlabdallah, AbdallahPashami, SepidehRögnvaldsson, ThorsteinnNowaczyk, SławomirOhlsson, Mattias
By organisation
School of Information Technology
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 475 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf