hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Noninvasive Staging of Lymph Node Status in Breast Cancer Using Machine Learning: External Validation and Further Model Development
Lund University, Lund, Sweden.
Lund University, Lund, Sweden; Skåne University Hospital, Malmö, Sweden.
Lund University, Lund, Sweden.
Lund University, Lund, Sweden; Skåne University Hospital, Malmö, Sweden.
Show others and affiliations
2023 (English)In: JMIR Cancer, E-ISSN 2369-1999, Vol. 9, article id e46474Article in journal (Refereed) Published
Abstract [en]

Background: Most patients diagnosed with breast cancer present with a node-negative disease. Sentinel lymph node biopsy (SLNB) is routinely used for axillary staging, leaving patients with healthy axillary lymph nodes without therapeutic effects but at risk of morbidities from the intervention. Numerous studies have developed nodal status prediction models for noninvasive axillary staging using postoperative data or imaging features that are not part of the diagnostic workup. Lymphovascular invasion (LVI) is a top-ranked predictor of nodal metastasis; however, its preoperative assessment is challenging.Objective: This paper aimed to externally validate a multilayer perceptron (MLP) model for noninvasive lymph node staging (NILS) in a large population-based cohort (n=18,633) and develop a new MLP in the same cohort. Data were extracted from the Swedish National Quality Register for Breast Cancer (NKBC, 2014-2017), comprising only routinely and preoperatively available documented clinicopathological variables. A secondary aim was to develop and validate an LVI MLP for imputation of missing LVI status to increase the preoperative feasibility of the original NILS model. Methods: Three nonoverlapping cohorts were used for model development and validation. A total of 4 MLPs for nodal status and 1 LVI MLP were developed using 11 to 12 routinely available predictors. Three nodal status models were used to account for the different availabilities of LVI status in the cohorts and external validation in NKBC. The fourth nodal status model was developed for 80% (14,906/18,663) of NKBC cases and validated in the remaining 20% (3727/18,663). Three alternatives for imputation of LVI status were compared. The discriminatory capacity was evaluated using the validation area under the receiver operating characteristics curve (AUC) in 3 of the nodal status models. The clinical feasibility of the models was evaluated using calibration and decision curve analyses.Results: External validation of the original NILS model was performed in NKBC (AUC 0.699, 95% CI 0.690-0.708) with good calibration and the potential of sparing 16% of patients with node-negative disease from SLNB. The LVI model was externally validated (AUC 0.747, 95% CI 0.694-0.799) with good calibration but did not improve the discriminatory performance of the nodal status models. A new nodal status model was developed in NKBC without information on LVI (AUC 0.709, 95% CI: 0.688-0.729), with excellent calibration in the holdout internal validation cohort, resulting in the potential omission of 24% of patients from unnecessary SLNBs.Conclusions: The NILS model was externally validated in NKBC, where the imputation of LVI status did not improve the model's discriminatory performance. A new nodal status model demonstrated the feasibility of using register data comprising only the variables available in the preoperative setting for NILS using machine learning. Future steps include ongoing preoperative validation of the NILS model and extending the model with, for example, mammography images. © Malin Hjärtström, Looket Dihge, Pär-Ola Bendahl, Ida Skarping, Julia Ellbrant, Mattias Ohlsson, Lisa Rydén.

Place, publisher, year, edition, pages
Toronto, ON: JMIR Publications, 2023. Vol. 9, article id e46474
Keywords [en]
breast neoplasm, sentinel lymph node biopsy, SLNB, noninvasive lymph node staging, NILS, prediction model, multilayer perceptron, MLP, register data, breast cancer, cancer, validation study, machine learning, model development, therapeutic, feasibility, diagnostic, lymph node, mammography images
National Category
Cancer and Oncology
Research subject
Health Innovation, IDC
Identifiers
URN: urn:nbn:se:hh:diva-52292DOI: 10.2196/46474ISI: 001114965400001PubMedID: 37983068Scopus ID: 2-s2.0-85179158675OAI: oai:DiVA.org:hh-52292DiVA, id: diva2:1822319
Funder
Swedish Cancer SocietySwedish Research CouncilCancer and Allergy Foundation
Note

Funding: IS and LD received funding from Governmental Funding of Clinical Research within the National Health Service. LR received funding from the Erling Persson Family Foundation (2018 and 2022), the Governmental Funding of Clinical Research within the National Health Service (2018/40304), the Swedish Cancer Society (2019/0388), the Swedish Research Council (2020/01491), and the Swedish Cancer and Allergy Fund.

Available from: 2023-12-22 Created: 2023-12-22 Last updated: 2024-01-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Ohlsson, Mattias

Search in DiVA

By author/editor
Ohlsson, Mattias
By organisation
School of Information Technology
In the same journal
JMIR Cancer
Cancer and Oncology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 33 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf