hh.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Understanding Survival Models through Counterfactual Explanations
Halmstad University, School of Information Technology.ORCID iD: 0000-0001-9416-5647
Halmstad University, School of Information Technology.ORCID iD: 0000-0003-3272-4145
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The development of black-box survival models has created a need for methods that explain their outputs, just as in the case of traditional machine learning methods. Survival models usually predict functions rather than point estimates. This special nature of their output makes it more difficult to explain their operation. We propose a method to generate plausible counterfactual explanations for survival models. The method supports two options that handle the special nature of survival models' output. One option relies on the Survival Scores, which are based on the area under the survival function, which is more suitable for proportional hazard models. The other one relies on Survival Patterns in the predictions of the survival model, which represent groups that are significantly different from the survival perspective. This guarantees an intuitive well-defined change from one risk group (Survival Pattern) to another and can handle more realistic cases where the proportional hazard assumption does not hold. The method uses a Particle Swarm Optimization algorithm to optimize a loss function to achieve four objectives: the desired change in the target, proximity to the explained example, likelihood, and the actionability of the counterfactual example. Two predictive maintenance datasets and one medical dataset are used to illustrate the results in different settings. The results show that our method produces plausible counterfactuals, which increase the understanding of black-box survival models.

Keywords [en]
Survival Analysis, Explainable Artificial Intelligence, Survival Patterns, Counterfactual Explanations
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:hh:diva-52260OAI: oai:DiVA.org:hh-52260DiVA, id: diva2:1820620
Funder
Knowledge Foundation, 20200001
Note

Som manuscript i avhandling/As manuscript in thesis

Available from: 2023-12-18 Created: 2023-12-18 Last updated: 2023-12-19Bibliographically approved
In thesis
1. Machine Learning Survival Models: Performance and Explainability
Open this publication in new window or tab >>Machine Learning Survival Models: Performance and Explainability
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Survival analysis is an essential statistics and machine learning field in various critical applications like medical research and predictive maintenance. In these domains understanding models' predictions is paramount. While machine learning techniques are increasingly applied to enhance the predictive performance of survival models, they simultaneously sacrifice transparency and explainability. 

Survival models, in contrast to regular machine learning models, predict functions rather than point estimates like regression and classification models. This creates a challenge regarding explaining such models using the known off-the-shelf machine learning explanation techniques, like Shapley Values, Counterfactual examples, and others.   

Censoring is also a major issue in survival analysis where the target time variable is not fully observed for all subjects. Moreover, in predictive maintenance settings, recorded events do not always map to actual failures, where some components could be replaced because it is considered faulty or about to fail in the future based on an expert's opinion. Censoring and noisy labels create problems in terms of modeling and evaluation that require to be addressed during the development and evaluation of the survival models.

Considering the challenges in survival modeling and the differences from regular machine learning models, this thesis aims to bridge this gap by facilitating the use of machine learning explanation methods to produce plausible and actionable explanations for survival models. It also aims to enhance survival modeling and evaluation revealing a better insight into the differences among the compared survival models.

In this thesis, we propose two methods for explaining survival models which rely on discovering survival patterns in the model's predictions that group the studied subjects into significantly different survival groups. Each pattern reflects a specific survival behavior common to all the subjects in their respective group. We utilize these patterns to explain the predictions of the studied model in two ways. In the first, we employ a classification proxy model that can capture the relationship between the descriptive features of subjects and the learned survival patterns. Explaining such a proxy model using Shapley Values provides insights into the feature attribution of belonging to a specific survival pattern. In the second method, we addressed the "what if?" question by generating plausible and actionable counterfactual examples that would change the predicted pattern of the studied subject. Such counterfactual examples provide insights into actionable changes required to enhance the survivability of subjects.

We also propose a variational-inference-based generative model for estimating the time-to-event distribution. The model relies on a regression-based loss function with the ability to handle censored cases. It also relies on sampling for estimating the conditional probability of event times. Moreover, we propose a decomposition of the C-index into a weighted harmonic average of two quantities, the concordance among the observed events and the concordance between observed and censored cases. These two quantities, weighted by a factor representing the balance between the two, can reveal differences between survival models previously unseen using only the total Concordance index. This can give insight into the performances of different models and their relation to the characteristics of the studied data.

Finally, as part of enhancing survival modeling, we propose an algorithm that can correct erroneous event labels in predictive maintenance time-to-event data. we adopt an expectation-maximization-like approach utilizing a genetic algorithm to find better labels that would maximize the survival model's performance. Over iteration, the algorithm builds confidence about events' assignments which improves the search in the following iterations until convergence.

We performed experiments on real and synthetic data showing that our proposed methods enhance the performance in survival modeling and can reveal the underlying factors contributing to the explainability of survival models' behavior and performance.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2023. p. 25
Series
Halmstad University Dissertations ; 108
Keywords
Survival Analysis, Explainable Artificial Intelligence, Survival Patterns, Counterfactual Explanations, Evaluation Metrics, Concordance Index
National Category
Signal Processing
Identifiers
urn:nbn:se:hh:diva-52269 (URN)978-91-89587-30-4 (ISBN)978-91-89587-29-8 (ISBN)
Presentation
2024-01-18, Wigforss, Hus J, Kristan IV:s väg 3, Halmstad, 09:00 (English)
Opponent
Supervisors
Available from: 2023-12-19 Created: 2023-12-18 Last updated: 2024-02-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Alabdallah, AbdallahPashami, SepidehOhlsson, MattiasRögnvaldsson, Thorsteinn

Search in DiVA

By author/editor
Alabdallah, AbdallahPashami, SepidehOhlsson, MattiasRögnvaldsson, Thorsteinn
By organisation
School of Information Technology
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 370 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf