hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multiyear analysis uncovers coordinated seasonality in stocks and composition of the planktonic food web in the Baltic Sea proper
Linnaeus University, Kalmar, Sweden.
Linnaeus University, Kalmar, Sweden; University of Gothenburg, Gothenburg, Sweden.
Linnaeus University, Kalmar, Sweden.
Linnaeus University, Kalmar, Sweden.
Show others and affiliations
2023 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 13, no 1, article id 11865Article in journal (Refereed) Published
Abstract [en]

The planktonic realm from bacteria to zooplankton provides the baseline for pelagic aquatic food webs. However, multiple trophic levels are seldomly included in time series studies, hampering a holistic understanding of the influence of seasonal dynamics and species interactions on food web structure and biogeochemical cycles. Here, we investigated plankton community composition, focusing on bacterio-, phyto- and large mesozooplankton, and how biotic and abiotic factors correlate at the Linnaeus Microbial Observatory (LMO) station in the Baltic Sea from 2011 to 2018. Plankton communities structures showed pronounced dynamic shifts with recurring patterns. Summarizing the parts of the planktonic microbial food web studied here to total carbon, a picture emerges with phytoplankton consistently contributing > 39% while bacterio- and large mesozooplankton contributed ~ 30% and ~ 7%, respectively, during summer. Cyanophyceae, Actinobacteria, Bacteroidetes, and Proteobacteria were important groups among the prokaryotes. Importantly, Dinophyceae, and not Bacillariophyceae, dominated the autotrophic spring bloom whereas Litostomatea (ciliates) and Appendicularia contributed significantly to the consumer entities together with the more traditionally observed mesozooplankton, Copepoda and Cladocera. Our findings of seasonality in both plankton composition and carbon stocks emphasize the importance of time series analyses of food web structure for characterizing the regulation of biogeochemical cycles and appropriately constraining ecosystem models. © 2023, The Author(s).

Place, publisher, year, edition, pages
London: Nature Publishing Group, 2023. Vol. 13, no 1, article id 11865
National Category
Oceanography, Hydrology and Water Resources
Identifiers
URN: urn:nbn:se:hh:diva-51431DOI: 10.1038/s41598-023-38816-0PubMedID: 37481661Scopus ID: 2-s2.0-85165356529OAI: oai:DiVA.org:hh-51431DiVA, id: diva2:1788701
Funder
Swedish Research Council Formas
Note

Funding: Open access funding provided by Linnaeus University.

Available from: 2023-08-16 Created: 2023-08-16 Last updated: 2023-08-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Legrand, Catherine

Search in DiVA

By author/editor
Legrand, Catherine
By organisation
School of Business, Innovation and Sustainability
In the same journal
Scientific Reports
Oceanography, Hydrology and Water Resources

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf