hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predicting state of health and end of life for batteries in hybrid energy buses
Halmstad University, School of Information Technology.ORCID iD: 0000-0002-6040-2269
Halmstad University, School of Information Technology.ORCID iD: 0000-0002-3034-6630
Halmstad University, School of Information Technology.ORCID iD: 0000-0003-3272-4145
Halmstad University, School of Information Technology, Center for Applied Intelligent Systems Research (CAISR).ORCID iD: 0000-0002-7796-5201
Show others and affiliations
2020 (English)In: Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference / [ed] Baraldi, Piero; Di Maio, Francesco; Zio, Enrico, Singapore: Research Publishing Services, 2020, p. 1231-1231Conference paper, Published paper (Refereed)
Abstract [en]

There is a major ongoing transition from utilizing fossil fuel to electricity in buses for enabling a more sustainable, environmentally friendly, and connected transportation ecosystem. Batteries are expensive, up to 30% of the total cost for the vehicle (A. Fotouhi 2016), and considered safety-critical components for electric vehicles (EV). As they deteriorate over time, monitoring the health status and performing the maintenance accordingly in a proactive manner is crucial to achieving not only a safe and sustainable transportation system but also a cost-effective operation and thus a greater market satisfaction. As a widely used indicator, the State of Health (SOH) is a measurement that reflects the current capability of the battery in comparison to an ideal condition. Accurate estimation of SOH is important to evaluate the validity of the batteries for the intended application and can be utilized as a proxy to estimate the remaining useful life (RUL) and predict the end-of-life (EOL) of batteries for maintenance planning. The SOH is computed via an on-board computing device, i.e. battery management unit (BMU), which is commonly developed based on controlled experiments and many of them are physical-model based approaches that only depend on the internal parameters of the battery (B. Pattipati 2008; M. H. Lipu 2018). However, the deterioration processes of batteries in hybrid and full-electric buses depend not only on the designing parameters but also on the operating environment and usage patterns of the vehicle. Therefore, utilizing multiple data sources to estimate the health status and EOL of the batteries is of potential internet. In this study, a data-driven prognostic method is developed to estimate SOH and predict EOL for batteries in heterogeneous fleets of hybrid buses, using various types of data sources, e.g. physical configuration of the vehicle, deployment information, on-board sensor readings, and diagnostic fault codes. A set of new features was generated from the existing sensor readings by inducing artificial resets on each battery replacement. A neural network-based regression model achieved accurate estimates of battery SOH status. Another network was used to indicate the EOL of batteries and the result was evaluated using battery replacement based on the current maintenance strategy. © ESREL2020-PSAM15 Organizers. Published by Research Publishing, Singapore.

Place, publisher, year, edition, pages
Singapore: Research Publishing Services, 2020. p. 1231-1231
Keywords [en]
Electric vehicles, Lithium-ion Battery, Predictive Maintenance. References, Remaining Useful Life Prediction, State of Health Estimation
National Category
Other Civil Engineering
Identifiers
URN: urn:nbn:se:hh:diva-51416DOI: 10.3850/978-981-14-8593-0_4515-cdScopus ID: 2-s2.0-85107295970ISBN: 9789811485930 (print)OAI: oai:DiVA.org:hh-51416DiVA, id: diva2:1788288
Conference
30th European Safety and Reliability Conference, ESREL 2020 and 15th Probabilistic Safety Assessment and Management Conference, PSAM15 2020, Venice, Italy, 1-5 November, 2020
Available from: 2023-08-16 Created: 2023-08-16 Last updated: 2023-08-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Altarabichi, Mohammed GhaithFan, YuantaoPashami, SepidehNowaczyk, SławomirRögnvaldsson, Thorsteinn

Search in DiVA

By author/editor
Altarabichi, Mohammed GhaithFan, YuantaoPashami, SepidehNowaczyk, SławomirRögnvaldsson, Thorsteinn
By organisation
School of Information TechnologyCenter for Applied Intelligent Systems Research (CAISR)
Other Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 245 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf