hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pull-off characterization of FRCM/Concrete interface
Qatar University, Doha, Qatar.
Qatar University, Doha, Qatar.ORCID iD: 0000-0003-2273-6863
2019 (English)In: Composites Part B: Engineering, ISSN 1359-8368, E-ISSN 1879-1069, Vol. 165, p. 545-553Article in journal (Refereed) Published
Abstract [en]

Fabric-reinforced cementitious matrix (FRCM) composites are usually surface-applied for strengthening reinforced concrete (RC) structures. The efficacy of the FRCM strengthening systems is dependent on the FRCM/concrete bond performance. This paper reports on the experimental results of FRCM/concrete bond characterization through pull-off tests. Six FRCM-strengthened RC slabs ( mm) were prepared and enabled conducting 72 FRCM/concrete pull-off tests. The parameters investigated included: (a) FRCM material (carbon or polyparaphenylene benzobisoxazole (PBO)); (b) level of substrate roughness (no/low/high roughening); and (c) specimen's test age (7, 28, 56, and 84 days). All FRCM systems were single-plied. The study revealed a significance of the surface preparation and test age of specimens on the FRCM/concrete pull-off strength. High-roughness specimens showed an average of 74% pull-off strength increase compared to those without roughening. Also, specimens tested at Day 84 showed 54% strength increase compared to those tested at Day 7, on average. PBO-FRCM system showed slightly higher pull-off strength than that of the carbon counterpart. The specimens showed two distinctive failure types at the (i) fabric/mortar interface and (ii) concrete/matrix interface: the latter was more prominent in carbon-FRCM. Nonetheless, the failure mode was most dependent on the fabric geometry and the substrate roughness. Based on a statistical analysis of the tested specimens, prediction models were proposed for the FRCM/concrete pull-off strength and failure mode.

Place, publisher, year, edition, pages
2019. Vol. 165, p. 545-553
Keywords [en]
Fabric-reinforced cementitious matrix (FRCM), Textile-reinforced mortar (TRM), Pull-off test, Bond capacity, Reinforced concrete, Strengthening, Surface roughening
National Category
Building Technologies
Identifiers
URN: urn:nbn:se:hh:diva-48996DOI: 10.1016/j.compositesb.2019.02.025Scopus ID: 2-s2.0-85061531756OAI: oai:DiVA.org:hh-48996DiVA, id: diva2:1721369
Available from: 2022-12-21 Created: 2022-12-21 Last updated: 2023-02-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Younis, Adel

Search in DiVA

By author/editor
Younis, Adel
In the same journal
Composites Part B: Engineering
Building Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf