Context: Design smell detection is considered an efficient activity that decreases maintainability expenses and improves software quality. Human context plays an essential role in this domain. Objective: In this paper, we propose a search-based approach to optimize the selection of human evaluators for design smell detection. Method: For this purpose, Dragonfly Algorithm (DA) is employed to identify the optimal or near-optimal human evaluator's profiles. An online survey is designed and asks the evaluators to evaluate a sample of classes for the presence of god class design smell. The Kappa-Fleiss test has been used to validate the proposed approach. Results: The results show that the dragonfly optimization algorithm can be utilized effectively to decrease the efforts (time, cost ) of design smell detection concerning the identification of the number and the optimal or near-optimal profile of human experts required for the evaluation process. Conclusions: A Search-based approach can be effectively used for improving a god-class design smell detection. Consequently, this leads to minimizing the maintenance cost. © 2022 The Author(s)