hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Inhibiting the C5-C5a receptor axis
University of Queensland, St Lucia, Australia.
Karolinska Institute, Stockholm, Sweden.ORCID iD: 0000-0001-7790-8197
University of Trieste, Trieste, Italy.
2011 (English)In: Molecular Immunology, ISSN 0161-5890, E-ISSN 1872-9142, Vol. 48, no 14, p. 1631-1642Article in journal (Refereed) Published
Abstract [en]

Activation of the complement system is a major pathogenic event that drives various inflammatory responses in numerous diseases. All pathways of complement activation lead to cleavage of the C5 molecule generating the anaphylatoxin C5a and, C5b that subsequently forms the terminal complement complex (C5b-9). C5a exerts a predominant pro-inflammatory activity through interactions with the classical G-protein coupled receptor C5aR (CD88) as well as with the non-G protein coupled receptor C5L2 (GPR77), expressed on various immune and non-immune cells. C5b-9 causes cytolysis through the formation of the membrane attack complex (MAC), and sub-lytic MAC and soluble C5b-9 also possess a multitude of non-cytolytic immune functions. These two complement effectors, C5a and C5b-9, generated from C5 cleavage, are key components of the complement system responsible for propagating and/or initiating pathology in different diseases, including paroxysmal nocturnal hemoglobinuria, rheumatoid arthritis, ischemia-reperfusion injuries and neurodegenerative diseases. Thus, the C5-C5a receptor axis represents an attractive target for drug development. This review provides a comprehensive analysis of different methods of inhibiting the generation of C5a and C5b-9 as well as the signalling cascade of C5a via its receptors. These include the inhibition of C5 cleavage through targeting of C5 convertases or via the C5 molecule itself, as well as blocking the activity of C5a by neutralizing antibodies and pharmacological inhibitors, or by targeting C5a receptors per se. Examples of drugs and naturally occurring compounds used are discussed in relation to disease models and clinical trials. To date, only one such compound has thus far made it to clinical medicine: the anti-C5 antibody eculizumab, for treating paroxysmal nocturnal hemoglobinuria. However, a number of drug candidates are rapidly emerging that are currently in early-phase clinical trials. The C5-C5a axis as a target for drug development is highly promising for the treatment of currently intractable major human diseases. © 2011 Elsevier Ltd.

Place, publisher, year, edition, pages
Oxford: Elsevier, 2011. Vol. 48, no 14, p. 1631-1642
Keywords [en]
C5 antibodies, C5a; C5a antagonists, C5a receptor, Complement C5, Therapeutics
National Category
Immunology in the medical area
Identifiers
URN: urn:nbn:se:hh:diva-48869DOI: 10.1016/j.molimm.2011.04.014ISI: 000294096100006PubMedID: 21549429Scopus ID: 2-s2.0-79960465027OAI: oai:DiVA.org:hh-48869DiVA, id: diva2:1718809
Available from: 2022-12-13 Created: 2022-12-13 Last updated: 2023-02-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Nandakumar, Kutty Selva

Search in DiVA

By author/editor
Nandakumar, Kutty Selva
In the same journal
Molecular Immunology
Immunology in the medical area

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf