hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
VISUAL DETECTION OF PERSONAL PROTECTIVE EQUIPMENT & SAFETY GEAR ON INDUSTRY WORKERS
Halmstad University, School of Information Technology.
Halmstad University, School of Information Technology.
2022 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Workplace injuries are common in today's society due to a lack of adequately worn safety equipment. A system that only admits appropriately equipped personnel can be created to improve working conditions and worker safety. The goal is thus to develop a system that will improve construction workers' safety. Building such a system necessitates computer vision, which entails object recognition, facial recognition, and human recognition, among other things. The basic idea is first to detect the human and remove the background to speed up the process and avoid potential interferences. After that, the cropped image is subjected to facial and object recognition.

The code is written in Python and includes libraries such as OpenCV, face_recognition, and CVZone. Some of the different algorithms chosen were YOLOv4 and Histogram of Oriented Gradients. The results were measured at three respectively five-meter distances. As a result of the system’s pipeline, algorithms, and software, a mean average precision of 99% and 89% was achieved at the respective distances. At three and five meters, the model achieved a precision rate of 100%. The recall rates were 96% - 100% at 3m and 54% - 100% at 5m. Finally, the fps was measured at 1.2 on a system without GPU.

Abstract [sv]

Skador på arbetsplatsen är vanliga i dagens samhälle på grund av att skyddsutrustning inte används eller används felaktigt. Målet är därför att bygga ett robust system som ska förbättra säkerhet. Ett system som endast ger tillträde till personal med rätt skyddsutrustning kan skapas för att förbättra arbetsförhållandena och arbetarsäkerheten. Att bygga ett sådant system kräver datorseende, vilket bland annat innebär objektigenkänning, ansiktsigenkänning och mänsklig igenkänning. Grundidén är att först upptäcka människan och ta bort bakgrunden för att göra processen mer effektiv och undvika potentiella störningar. Därefter appliceras ansikts- och objektigenkänning på den beskurna bilden.

Koden är skriven i Python och inkluderar bland annat bibliotek som: OpenCV, face_recognition och CVZone. Några av de algoritmer som valdes var YOLOv4 och Histogram of Oriented Gradients. Resultatet mättes på tre, respektive fem meters avstånd. Systemets pipeline, algoritmer och mjukvara gav en medelprecision för alla klasser på 99%, och 89% för respektive avstånd. För tre och fem meters avstånd uppnådde modellen en precision på 100%. Recall uppnådde värden mellan 96% - 100% vid 3 meters avstånd och 54% - 100% vid 5 meters avstånd. Avslutningsvis uppmättes antalet bilder per sekund till 1,2 på ett system utan GPU.

Place, publisher, year, edition, pages
2022. , p. 47
Keywords [en]
Machine learning, yolo, yolov4, cnn, ppe, personal protective equipment, object detection, computer vision, deep learning, artificial intelligence, ai, real-time object detection, real-time, safety, construction, workers, industry, face recognition
National Category
Computer Vision and Robotics (Autonomous Systems)
Identifiers
URN: urn:nbn:se:hh:diva-47089OAI: oai:DiVA.org:hh-47089DiVA, id: diva2:1669707
External cooperation
HMS Networks
Educational program
Computer Engineer, 180 credits
Supervisors
Examiners
Available from: 2022-06-05 Created: 2022-06-14 Last updated: 2022-06-16Bibliographically approved

Open Access in DiVA

fulltext(1375 kB)3006 downloads
File information
File name FULLTEXT02.pdfFile size 1375 kBChecksum SHA-512
351a02b8d932b44dbc46206d23b80a969b7c3549b049b897732052dcf08d56eccbbebd1e974a554979975d779308d371e33b71e628da8c90ee241f5f448a5d12
Type fulltextMimetype application/pdf

By organisation
School of Information Technology
Computer Vision and Robotics (Autonomous Systems)

Search outside of DiVA

GoogleGoogle Scholar
Total: 3008 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 2553 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf