hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bank risk analysis with machine learning
Halmstad University, School of Information Technology.
Halmstad University, School of Information Technology.
2021 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Nowadays, the time and resources needed to get an accurate estima-tion of a client’s ability to pay back a loan has gone up. With theamount of data complexity it involves to do the credit risk analysis, the machine learning technique has been used to ease the process.To help a bank institute get a better insight into their client’s eco-nomic state. The thesis is to present a model that could help themfind interesting information using machine learning.With many clients having nonlinear income and expenses, it madethe machine learning algorithm of choosing, in this case, Linear Re-gression, very hard to predict an accurate output, the next month’ssalary. However, interesting relations between trends and the datahave been found.

Abstract [sv]

\noindent Numera har tiden och resurserna som behövs för att få en exakt uppskattning av en kunds förmåga att betala tillbaka ett lån ökat. Med mängden datakomplexitet som det innebär att göra kredit riskanalys har maskininlärnings tekniken använts för att underlätta processen. För att hjälpa ett bank institutet att få en bättre inblick i kundens ekonomiska tillstånd. Avhandlingen är att presentera en modell som kan hjälpa dem att hitta intressant information med hjälp av maskininlärning. Med många kunder som har icke-linjära inkomster och kostnader gör det maskininlärnings algoritmen att välja, i detta fall linjär regression, mycket svårt att förutsäga en exakt produktion, nästa månadslön. Intressanta relationer mellan trender och data har dock hittats.

Place, publisher, year, edition, pages
2021. , p. 49
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:hh:diva-44954OAI: oai:DiVA.org:hh-44954DiVA, id: diva2:1571414
Subject / course
Computer science and engineering
Educational program
Computer Science and Engineering, 300 credits
Supervisors
Examiners
Available from: 2021-06-29 Created: 2021-06-22 Last updated: 2021-06-29Bibliographically approved

Open Access in DiVA

fulltext(1162 kB)169 downloads
File information
File name FULLTEXT02.pdfFile size 1162 kBChecksum SHA-512
2ed998c46c76a615710baa200be1167e2018f09bca16f61828697f0f0d441e3614f6b7b97c3a21f1b8a8c192d4c17a38346bcf600a03be692ddf300e334f986e
Type fulltextMimetype application/pdf

By organisation
School of Information Technology
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 169 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 383 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf