Open this publication in new window or tab >>Show others...
2020 (English)In: Surface Topography: Metrology and Properties, ISSN 2051-672X, Vol. 8, no 1Article in journal (Refereed) Published
Abstract [en]
Additive Manufacturing (AM) is gaining prominence due to its massive advantage in fabricating components without any geometrical limitations. The most widely used AM technique is Fused Deposition Modelling (FDM). FDM is an extrusion-based AM mostly focused on producing functional prototypes and in some cases as an end-product. One of the most common challenges associated with FDM is its reduced dimensional accuracy and surface quality. A fair amount of research has been carried out to identify the factors affecting print quality and measures to reduce surface roughness. On a few occasions, it is still necessary to achieve higher precision and quality to meet the standards set by conventional manufacturing. Hence, post-processing is employed as an additional step to reach the finish required. This paper focuses on enhancing the surface quality of FDM parts by subjecting it to Acetone vapour smoothening, Shot-blasting and Laser-assisted finishing post-processing methods. A comparative study is presented in this paper, where surface produced by different post-processing methods were compared to the reference injection moulding components. The results suggest that the acetone-based process has the best surface finish compared to the other two means; however, it leaves a very glossy appearance to the part. Shot blasting is very aggressive, and blasting time has a strong influence on the part quality. Laser-assisted finishing slightly ignites the top layer during melting leading to discolouration of the part. The optimum solution was found to be combining the post-processes, which not only reduced the roughness but also enhanced the aesthetic properties of the product. © 2020 IOP Publishing Ltd.
Place, publisher, year, edition, pages
Bristol: Institute of Physics Publishing (IOPP), 2020
Keywords
additive manufacturing, fused deposition modelling, post processing, surface metrology, areal surface texture parameters, profilomete, power spectral density
National Category
Manufacturing, Surface and Joining Technology
Identifiers
urn:nbn:se:hh:diva-43270 (URN)10.1088/2051-672X/ab77d7 (DOI)000517480500001 ()2-s2.0-85081609918 (Scopus ID)
Funder
Vinnova
Note
Funding Agency: TyloHelo Company
2020-12-082020-12-082024-12-02Bibliographically approved