Software is increasingly embedded in a variety of physical contexts. This imposes new requirements on tools that support the design and analysis of systems. For instance, modeling embedded and cyber-physical systems needs to blend discrete mathematics, which is suitable for modeling digital components, with continuous mathematics, used for modeling physical components. This blending of continuous and discrete creates challenges that are absent when the discrete or the continuous setting are considered in isolation. We consider robustness, that is, the ability of an analysis of a model to cope with small amounts of imprecision in the model. Formally, we identify analyses with monotonic maps between complete lattices (a mathematical framework used for abstract interpretation and static analysis) and define robustness for monotonic maps between complete lattices of closed subsets of a metric space. © Springer Nature Switzerland AG 2019
Also part of the Theoretical Computer Science and General Issues book sub series (LNTCS, volume 11200)