hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Towards large-scale monitoring of operationally diverse thermal energy systems with data-driven techniques
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The core of many typical large-scale industrial infrastructures consists of hundreds or thousands of systems that are similar in their basic design and purpose. For instance, District Heating (DH) utilities rely on a large network of substations to deliver heat to their customers. Similarly, a factory may require a large fleet of specialized robots for manufacturing a certain product. Monitoring these systems is important for maintaining the overall efficiency of industrial operations by detecting various problems due to faults and misconfiguration. However, this can be challenging since a well-understood prior model for each system is rarely available.

In most cases, each system in a fleet or network is fitted with a set of sensors to measure its state at different time intervals. Typically, a data-driven model for each system can be used for their monitoring. However, not all factors that can influence the operation of each system in a fleet have an associated sensor. Moreover, sufficient data instances of normal, atypical, and faulty behavior are rarely available to train such a model. These issues can impede the effectiveness of a system-level data-driven model. Alternatively, it can be assumed that since all the systems in a fleet are working on a similar task, they should all behave in a homogeneous manner. Any system that behaves differently from the majority is then considered an outlier. It is referred to as a global or fleet-level model. While the approach is simple, it is less effective in the presence of non-stationary working conditions. Hence, both system-level and fleet-level modeling approaches have their limitations.

This thesis investigates system-level and fleet-level models for large-scale monitoring of systems. It proposes to rely on an alternative way, referred to as a reference-group based approach. Herein, the operational monitoring of a target system is delegated to a reference-group, which consists of systems experiencing a comparable operating regime along with the target system. Thus, the definition of a normal, atypical, or faulty operational behavior in a target system is described relative to its reference-group. This definition depends on the choice of the selected anomaly detection model. In this sense, if the target system is not behaving operationally in consort with the systems in its reference-group, then it can be inferred that this is either due to a fault or because of some atypical operation arising at the target system due to its local peculiarities. The application area for these investigations is the large-scale operational monitoring of thermal energy systems: network of DH substations and fleet of heat-pumps.

The current findings indicate three advantages of a reference-group based approach. The first is that the reference operational behavior of a target system in the fleet does not need to be predefined. The second is that it provides a basis for what a target system’s operational behavior should have been and what it is. In this respect, each system in the reference-group provides evidence about a particular behavior during a particular period. It can be very useful when the description of a normal, atypical, and faulty operational behavior is not available. The third is that it can detect atypical and faulty operational behavior quickly compared to fleet-level models of anomaly detection.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2019. , p. 74
Series
Halmstad University Dissertations ; 65
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:hh:diva-40964ISBN: 978-91-88749-38-3 (print)ISBN: 978-91-88749-39-0 (electronic)OAI: oai:DiVA.org:hh-40964DiVA, id: diva2:1370686
Presentation
2019-11-26, O125, O building, Linjegatan 12, Halmstad, 13:00 (English)
Opponent
Supervisors
Funder
Knowledge FoundationAvailable from: 2019-11-18 Created: 2019-11-16 Last updated: 2022-05-23Bibliographically approved
List of papers
1. On monitoring heat-pumps with a group-based conformal anomaly detection approach
Open this publication in new window or tab >>On monitoring heat-pumps with a group-based conformal anomaly detection approach
2018 (English)In: ICDATA' 18: Proceedings of the 2018 International Conference on Data Science / [ed] Robert Stahlbock, Gary M. Weiss, Mahmoud Abou-Nasr, CSREA Press, 2018, p. 63-69Conference paper, Published paper (Refereed)
Abstract [en]

The ever increasing complexity of modern systems and equipment make the task of monitoring their health quite challenging. Traditional methods such as expert defined thresholds, physics based models and process history based techniques have certain drawbacks. Thresholds defined by experts require deep knowledge about the system and are often too conservative. Physics driven approaches are costly to develop and maintain. Finally, process history based models require large amount of data that may not be available at design time of a system. Moreover, the focus of these traditional approaches has been system specific. Hence, when industrial systems are deployed on a large scale, their monitoring becomes a new challenge. Under these conditions, this paper demonstrates the use of a group-based selfmonitoring approach that learns over time from similar systems subject to similar conditions. The approach is based on conformal anomaly detection coupled with an exchangeability test that uses martingales. This allows setting a threshold value based on sound theoretical justification. A hypothesis test based on this threshold is used to decide on if a system has deviated from its group. We demonstrate the feasibility of this approach through a real case study of monitoring a group of heat-pumps where it can detect a faulty hot-water switch-valve and a broken outdoor temperature sensor without previously observing these faults.

Place, publisher, year, edition, pages
CSREA Press, 2018
Keywords
group-based monitoring, nonconformity measure (NCM), martingale test
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:hh:diva-40961 (URN)1-60132-481-2 (ISBN)9781601324818 (ISBN)
Conference
2018 Internal Conference on Data Science (ICDATA’18), Las Vegas, NV, USA
Available from: 2019-11-16 Created: 2019-11-16 Last updated: 2022-02-01Bibliographically approved
2. Towards understanding district heating substation behavior using robust first difference regression
Open this publication in new window or tab >>Towards understanding district heating substation behavior using robust first difference regression
2018 (English)In: Energy Procedia, Amsterdam: Elsevier, 2018, Vol. 149, p. 236-245Conference paper, Published paper (Refereed)
Abstract [en]

The behavior of a district heating (DH) substation has a social and operational context. The social context comes from its general usage pattern and personal requirements of building inhabitants. The operational context comes from its configuration settings which considers both the weather conditions and social requirements. The parameter estimating thermal energy demand response with respect to change in outdoor temperature conditions along with the strength of the relationship between these variables are two important measures of operational efficiency of a substation. In practice, they can be estimated using a regression model where the slope parameter measures the average response and R2 measures the strength of the relationship. These measures are also important from a monitoring perspective. However, factors related to the social context of a building and the presence of unexplained outliers can make the estimation of these measures a challenging task. Social context of a data point in DH, in many cases appears as an outlier. Data efficiency is also required if these measures are to be estimated in a timely manner. Under these circumstances, methods that can isolate and reduce the effect of outliers in a principled and data efficient manner are required. We therefore propose to use Huber regression, a robust method based on M-estimator type loss function. This method can not only identify possible outliers present in the data of each substation but also reduce their effect on the estimated slope parameter. Moreover, substations that are comparable according to certain criteria, for instance, those with almost identical energy demand levels, should have relatively similar slopes. This provides an opportunity to observe deviating substations under the assumption that comparable substations should show homogeneity in their behavior. Furthermore, the slope parameter can be compared across time to observe if the dynamics of a substation has changed. Our analysis shows that Huber regression in combination with ordinary least squares can provide reliable estimates on the operational efficiency of DH substations. © 2018 The Authors. Published by Elsevier Ltd.

Place, publisher, year, edition, pages
Amsterdam: Elsevier, 2018
Series
Energy Procedia, E-ISSN 1876-6102 ; 149
Keywords
district heating, energy demand response, outliers, robust regression, substation control, Energy management, Regression analysis, Statistics, Energy demands, Heating substations, Operational efficiencies, Ordinary least squares, Parameter estimating, Robust regressions, Substation controls, Parameter estimation
National Category
Energy Systems
Identifiers
urn:nbn:se:hh:diva-38729 (URN)10.1016/j.egypro.2018.08.188 (DOI)000482873900025 ()2-s2.0-85054085009 (Scopus ID)
Conference
16th International Symposium on District Heating and Cooling, DHC 2018, 9-12 September, 2018
Available from: 2019-01-08 Created: 2019-01-08 Last updated: 2022-02-01Bibliographically approved
3. Large-scale monitoring of operationally diverse district heating substations: A reference-group based approach
Open this publication in new window or tab >>Large-scale monitoring of operationally diverse district heating substations: A reference-group based approach
Show others...
2020 (English)In: Engineering applications of artificial intelligence, ISSN 0952-1976, E-ISSN 1873-6769, Vol. 90, article id 103492Article in journal (Refereed) Published
Abstract [en]

A typical district heating (DH) network consists of hundreds, sometimes thousands, of substations. In the absence of a well-understood prior model or data labels about each substation, the overall monitoring of such large number of substations can be challenging. To overcome the challenge, an approach based on the collective operational monitoring of each substation by a local group (i.e., the reference-group) of other similar substations in the network was formulated. Herein, if a substation of interest (i.e., the target) starts to behave differently in comparison to those in its reference-group, then it was designated as an outlier. The approach was demonstrated on the monitoring of the return temperature variable for atypical and faulty operational behavior in 778 substations associated with multi-dwelling buildings. The choice of an appropriate similarity measure along with its size k were the two important factors that enables a reference-group to effectively detect an outlier target. Thus, different similarity measures and size k for the construction of the reference-groups were investigated, which led to the selection of the Euclidean distance with = 80. This setup resulted in the detection of 77 target substations that were outliers, i.e., the behavior of their return temperature changed in comparison to the majority of those in their respective reference-groups. Of these, 44 were detected due to the local construction of the reference-groups. In addition, six frequent patterns of deviating behavior in the return temperature of the substations were identified using the reference-group based approach, which were then further corroborated by the feedback from a DH domain expert. © 2020 Elsevier Ltd

Place, publisher, year, edition, pages
Oxford: Elsevier, 2020
Keywords
District heating substations, Return temperature, Reference-group based operational monitoring, Fault detection, Outlier detection
National Category
Other Engineering and Technologies not elsewhere specified
Identifiers
urn:nbn:se:hh:diva-40962 (URN)10.1016/j.engappai.2020.103492 (DOI)000528194400012 ()2-s2.0-85078822459 (Scopus ID)
Funder
Knowledge Foundation, 20160103
Available from: 2019-11-16 Created: 2019-11-16 Last updated: 2022-02-01Bibliographically approved

Open Access in DiVA

fulltext(6567 kB)457 downloads
File information
File name FULLTEXT02.pdfFile size 6567 kBChecksum SHA-512
99e490f67f3c483d278a03c4ca4ff6be4dde5491c7e0cb6fb27df6791d5a3856f4436137757a8e1f402f74f811d89c42592b148c649b494e650325216fe4963d
Type fulltextMimetype application/pdf

Authority records

Farouq, Shiraz

Search in DiVA

By author/editor
Farouq, Shiraz
By organisation
CAISR - Center for Applied Intelligent Systems Research
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 882 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2299 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf