Open this publication in new window or tab >>2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]
The core of many typical large-scale industrial infrastructures consists of hundreds or thousands of systems that are similar in their basic design and purpose. For instance, District Heating (DH) utilities rely on a large network of substations to deliver heat to their customers. Similarly, a factory may require a large fleet of specialized robots for manufacturing a certain product. Monitoring these systems is important for maintaining the overall efficiency of industrial operations by detecting various problems due to faults and misconfiguration. However, this can be challenging since a well-understood prior model for each system is rarely available.
In most cases, each system in a fleet or network is fitted with a set of sensors to measure its state at different time intervals. Typically, a data-driven model for each system can be used for their monitoring. However, not all factors that can influence the operation of each system in a fleet have an associated sensor. Moreover, sufficient data instances of normal, atypical, and faulty behavior are rarely available to train such a model. These issues can impede the effectiveness of a system-level data-driven model. Alternatively, it can be assumed that since all the systems in a fleet are working on a similar task, they should all behave in a homogeneous manner. Any system that behaves differently from the majority is then considered an outlier. It is referred to as a global or fleet-level model. While the approach is simple, it is less effective in the presence of non-stationary working conditions. Hence, both system-level and fleet-level modeling approaches have their limitations.
This thesis investigates system-level and fleet-level models for large-scale monitoring of systems. It proposes to rely on an alternative way, referred to as a reference-group based approach. Herein, the operational monitoring of a target system is delegated to a reference-group, which consists of systems experiencing a comparable operating regime along with the target system. Thus, the definition of a normal, atypical, or faulty operational behavior in a target system is described relative to its reference-group. This definition depends on the choice of the selected anomaly detection model. In this sense, if the target system is not behaving operationally in consort with the systems in its reference-group, then it can be inferred that this is either due to a fault or because of some atypical operation arising at the target system due to its local peculiarities. The application area for these investigations is the large-scale operational monitoring of thermal energy systems: network of DH substations and fleet of heat-pumps.
The current findings indicate three advantages of a reference-group based approach. The first is that the reference operational behavior of a target system in the fleet does not need to be predefined. The second is that it provides a basis for what a target system’s operational behavior should have been and what it is. In this respect, each system in the reference-group provides evidence about a particular behavior during a particular period. It can be very useful when the description of a normal, atypical, and faulty operational behavior is not available. The third is that it can detect atypical and faulty operational behavior quickly compared to fleet-level models of anomaly detection.
Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2019. p. 74
Series
Halmstad University Dissertations ; 65
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:hh:diva-40964 (URN)978-91-88749-38-3 (ISBN)978-91-88749-39-0 (ISBN)
Presentation
2019-11-26, O125, O building, Linjegatan 12, Halmstad, 13:00 (English)
Opponent
Supervisors
Funder
Knowledge Foundation
2019-11-182019-11-162022-05-23Bibliographically approved