hh.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Undersökning av lämpliga sensorer till ett övervakningssystem för farliga zoner
Halmstad University.
Halmstad University.
2019 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

I denna rapport presenteras undersökningar av olika tekniker för att identifiera personer i ett förbestämt område. RCWL-0516 radarmodul och kameraövervakning var metoder som undersöktes och testades. Distansmätningstest gjordes på RCWL-0516, genom olika material och med känslighetsmanipulering av modulen. Samtidigt så testades olika bildanalysmetoder i samband med kameraövervakning. I resultatet kom vi fram till att videoövervakning med bildanalys, till exempel You-Only-Look-Once-algoritmen (YOLO), var en bra lösning på det presenterade problemet medan radarmodulen inte var lika lämpad.

Abstract [en]

This report presents surveys of various techniques to identify people in a predetermined area. RCWL-0516 radar module and camera monitoring were methods that were investigated and tested. A distance measurement test was done on RCWL-0516, once through different materials and another with sensitivity manipulation of the module. At the same time, we tested various image analysis methods in connection with camera surveillance. In the result, we concluded that video surveillance with image analysis, for example You-Only-Look-Once-algoritmen (YOLO), was a good solution to the problem presented while the radar module was not as suitable.

Place, publisher, year, edition, pages
2019. , p. 38
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:hh:diva-40621OAI: oai:DiVA.org:hh-40621DiVA, id: diva2:1353861
Subject / course
Computer science and engineering
Educational program
Computer Science and Engineering, 300 credits
Supervisors
Examiners
Available from: 2019-09-25 Created: 2019-09-24 Last updated: 2019-09-25Bibliographically approved

Open Access in DiVA

fulltext(11078 kB)272 downloads
File information
File name FULLTEXT02.pdfFile size 11078 kBChecksum SHA-512
856fb37546d02bacec634372af8150d22b7bc96871ab0b63ec57f7a03627adc0b7e4b1f8ca9838c35d77848554d3b0eb7e4c6966d7868ad243c0e03b5fbaaf39
Type fulltextMimetype application/pdf

By organisation
Halmstad University
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 272 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 493 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf