hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials
Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA & Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, USA & European XFEL, Schenefeld, Germany.ORCID iD: 0000-0002-8530-0576
Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany.
Institut für Theoretische Festkörperphysik, JARA-FIT and JARA-HPC, RWTH Aachen University, Aachen, Germany.
Instituto de Optica, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
Show others and affiliations
2019 (English)In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 364, no 6445, p. 1062-1067Article in journal (Refereed) Published
Abstract [en]

In phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process. We found a liquid–liquid phase transition in the phase-change materials Ag4In3Sb67Te26 and Ge15Sb85 at 660 and 610 kelvin, respectively. The transition is predominantly caused by the onset of Peierls distortions, the amplitude of which correlates with an increase of the apparent activation energy of diffusivity. This reveals a relationship between atomic structure and kinetics, enabling a systematic optimization of the memory-switching kinetics. © 2019 American Association for the Advancement of Science.

Place, publisher, year, edition, pages
Washington, DC: American Association for the Advancement of Science , 2019. Vol. 364, no 6445, p. 1062-1067
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:hh:diva-39862DOI: 10.1126/science.aaw1773ISI: 000471306700040PubMedID: 31197008Scopus ID: 2-s2.0-85067625790OAI: oai:DiVA.org:hh-39862DiVA, id: diva2:1327132
Available from: 2019-06-19 Created: 2019-06-19 Last updated: 2019-09-09

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Andreasson, Björn Pererik

Search in DiVA

By author/editor
Zalden, PeterAndreasson, Björn PererikEnquist, HenrikRonneberger, IderMazzarello, RiccardoWuttig, MatthiasSokolowski-Tinten, Klaus
In the same journal
Science
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf