hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
AI-Based Malicious Network Traffic Detection in VANETs
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).ORCID iD: 0000-0003-1460-2988
Luleå University of Technology, Luleå, Sweden.
University of Liège, Liège, Belgium.ORCID iD: 0000-0001-6238-1628
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).ORCID iD: 0000-0003-4894-4134
2018 (English)In: IEEE Network, ISSN 0890-8044, E-ISSN 1558-156X, Vol. 32, no 6, p. 15-21Article in journal (Refereed) Published
Abstract [en]

Inherent unreliability of wireless communications may have crucial consequences when safety-critical C-ITS applications enabled by VANETs are concerned. Although natural sources of packet losses in VANETs such as network traffic congestion are handled by decentralized congestion control (DCC), losses caused by malicious interference need to be controlled too. For example, jamming DoS attacks on CAMs may endanger vehicular safety, and first and foremost are to be detected in real time. Our first goal is to discuss key literature on jamming modeling in VANETs and revisit some existing detection methods. Our second goal is to present and evaluate our own recent results on how to address the real-time jamming detection problem in V2X safety-critical scenarios with the use of AI. We conclude that our hybrid jamming detector, which combines statistical network traffic analysis with data mining methods, allows the achievement of acceptable performance even when random jitter accompanies the generation of CAMs, which complicates the analysis of the reasons for their losses in VANETs. The use case of the study is a challenging platooning C-ITS application, where V2X-enabled vehicles move together at highway speeds with short inter-vehicle gaps.

Place, publisher, year, edition, pages
Piscataway, NJ: IEEE, 2018. Vol. 32, no 6, p. 15-21
Keywords [en]
Vehicle safety, Telecommunication traffic, Road traffic, Wireless communication, Networked control systems, Real-time systems, Vehicular ad hoc networks, Intelligent vehicles, Artificial intelligence, Cams, Jamming
National Category
Communication Systems Telecommunications
Identifiers
URN: urn:nbn:se:hh:diva-38456DOI: 10.1109/MNET.2018.1800074ISI: 000451962400004Scopus ID: 2-s2.0-85057959135OAI: oai:DiVA.org:hh-38456DiVA, id: diva2:1267086
Projects
AstaMoCA “Model-Based Communication Architecture for the AstaZero Automotive Safety”
Funder
Knowledge FoundationELLIIT - The Linköping‐Lund Initiative on IT and Mobile CommunicationsAvailable from: 2018-11-30 Created: 2018-11-30 Last updated: 2023-05-22Bibliographically approved
In thesis
1. Performance evaluation of safety critical ITS-G5 V2V communications for cooperative driving applications
Open this publication in new window or tab >>Performance evaluation of safety critical ITS-G5 V2V communications for cooperative driving applications
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Intelligent Transport Systems (ITS) are aiming to provide innovative services related to different modes of transport and traffic management, and enable various users to be better informed and make safer, more coordinated and smarter use of transport networks. Cooperative-ITS (C-ITS) support connectivity between vehicles, vehicles and roadside infrastructure, traffic signals as well as with other road users. In order to enable vehicular communications European Telecommunication Standards Institute (ETSI) delivered ITS-G5 -- a of set of C-ITS standards. Considering the goals of C-ITS, inter-vehicle communications should be reliable and efficient.

The subject of this thesis is evaluation of the performance, efficiency, and dependability of ITS-G5 communications for cooperative driving applications support. This thesis includes eight scientific papers and extends the research area in three directions: evaluation of the performance of ITS-G5 beaconing protocols; studying the performance of ITS-G5 congestion control mechanisms; and studying the radio jamming Denial-of-Service (DoS) attacks and their detection methods.

First, an overview of currently available and ongoing standardization targeting communications in C-ACC/platooning cooperative driving applications is provided. Then, as part of the first research direction, we demonstrate via a number of studies, that the adaptive beaconing approach where message generation is coupled to the speed variation of the originating ITS-s may lead to a message synchronization effect in the time domain when vehicles follow mobility scenarios that involve cooperative speed variation. We explain in detail the cause of this phenomenon and test it for a wide range of parameters. In relation to the second problem, we, first, study the influence of different available ITS-G5 legitimate setups on the C-ACC/platooning fuel efficiency and demonstrate that proper communication setup may enhance fuel savings. Then we thoroughly study the standardization of the congestion control mechanism for ITS-G5, which will affect the operation of all cooperative driving C-ITS applications as a mandatory component. We study the influence of congestion control on application performance and give recommendations for improvement to make the congestion control to target at optimizing the applications performance metrics. In the scope of the last research direction, we propose two real-time jamming DoS detection methods. The main advantage of our detection techniques is their short learning phase that not exceed a few seconds and low detection delay of a few hundreds of milliseconds. Under some assumptions, the proposed algorithms demonstrates the ability to detect certain types of attacks with high detection probability.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2019. p. 186
Series
Halmstad University Dissertations ; 53
Keywords
C-ITS, VANET, ITS-G5, IEEE 802.11p, ETSI, platooning, C-ACC, jamming Denial-of-Service attack, congestion control, cooperative awareness, security in C-ITS
National Category
Communication Systems Telecommunications
Identifiers
urn:nbn:se:hh:diva-38763 (URN)978-91-88749-15-4 (ISBN)978-91-88749-14-7 (ISBN)
Public defence
2019-01-30, Wigforssalen, Visionen, Kristian IV:s väg 3, Halmstad, 10:15 (English)
Opponent
Supervisors
Available from: 2019-01-17 Created: 2019-01-16 Last updated: 2019-01-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Lyamin, NikitaDelooz, QuentinVinel, Alexey

Search in DiVA

By author/editor
Lyamin, NikitaDelooz, QuentinVinel, Alexey
By organisation
Centre for Research on Embedded Systems (CERES)
In the same journal
IEEE Network
Communication SystemsTelecommunications

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 315 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf