hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Accurate positioning of bicycles for improved safety
RISE Research Institutes of Sweden, Gothenburg, Sweden.ORCID iD: 0000-0003-1713-3726
RISE Research Institutes of Sweden, Gothenburg, Sweden.
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).ORCID iD: 0000-0002-6526-3931
2018 (English)In: 2018 IEEE International Conference on Consumer Electronics (ICCE) / [ed] Saraju P. Mohanty, Peter Corcoran & Hai (Helen) Li, Piscataway, NJ: IEEE, 2018Conference paper, Published paper (Refereed)
Abstract [en]

Cyclists are not well protected in accidents with other road users, and there are few active safety systems available for bicycles. In this study we have evaluated the use of inexpensive Real-Time Kinematic Satellite Navigation (RTK-SN) receivers with multiple satellite constellations together with dead reckoning for accurate positioning of bicycles to enable active safety functions such as collision warnings. This is a continuation of previous work were we concluded that RTK-SN alone is not sufficient in moderately dense urban areas as buildings and other obstructions degrade the performance of RTK-SN significantly. In this work we have added odometry to the positioning system as well as extending RTK-SN with multiple satellite constellations to deal with situations where the view of the sky is poor and thus fewer satellites are in view. To verify the performance of the positioning system we have used Ultra-Wideband radios as an independent positioning system to compare against while testing during poor conditions for RTK-SN. We were able to verify that adding dead reckoning and multiple satellite constellations improves the performance significantly under poor conditions and makes the positioning system more useful for active safety systems. © 2018 IEEE

Place, publisher, year, edition, pages
Piscataway, NJ: IEEE, 2018.
Series
Proceedings of ... IEEE International Symposium on Consumer Electronics, E-ISSN 2158-4001
Keywords [en]
RTK GPS, odometry, testbed, bicycle, positioning, ultra-wideband
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:hh:diva-35878DOI: 10.1109/ICCE.2018.8326237Scopus ID: 2-s2.0-85048765893ISBN: 978-1-5386-3025-9 (electronic)ISBN: 978-1-5386-3026-6 (print)OAI: oai:DiVA.org:hh-35878DiVA, id: diva2:1166422
Conference
36th IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, Jan. 12-14, 2018
Funder
Knowledge Foundation
Note

Funding: EISIGS (grants from the Knowledge Foundation) and through the Swedish Trafikverkets Skyltfond

Available from: 2017-12-14 Created: 2017-12-14 Last updated: 2020-02-03Bibliographically approved
In thesis
1. On the Design and Testing of Dependable Autonomous Systems
Open this publication in new window or tab >>On the Design and Testing of Dependable Autonomous Systems
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Designing software-intensive embedded systems for dependable autonomous applications is challenging. In addition to fulfilling complex functional requirements, the system must be safe under all operating conditions, even in the presence of faults. The key to achieving this is by simulating and testing the system enough, including possible faults that can be expected, to be confident that it reaches an acceptable level of performance with preserved safety. However, as the complexity of an autonomous system and its application grows, it becomes exponentially more difficult to perform exhaustive testing and explore the full state space, which makes the task a significant challenge.

Property-Based Testing (PBT) is a software testing technique where tests and input stimuli for a system are automatically generated based on specified properties of the system, and it is normally used for testing software libraries. PBT is not a formal proof that the system fulfills the specified properties, but an effective way to find deviations from them. Safety-critical systems that must be able to deal with hardware faults are often tested using Fault Injection (FI) at several abstraction levels. The purpose of FI is to inject faults into a system in order to exercise and evaluate fault handling mechanisms. In this thesis, we utilize techniques from PBT and FI, for automatically testing functional and safety requirements of autonomous system simultaneously. We have done this on both simulations of hardware, and on real-time hardware for autonomous systems. This has been done in the process of developing a quadcopter system with collision avoidance, as well as when developing a self-driving model car. With this work we explore how tests can be auto-generated with techniques from PBT and FI, and how this approach can be used at several abstraction levels during the development of these systems. We also explore which details and design choices have to be considered while developing our simulators and embedded software, to ease testing with our proposed methods.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2018. p. 171
Series
Halmstad University Dissertations ; 52
National Category
Computer Engineering
Identifiers
urn:nbn:se:hh:diva-38403 (URN)978-91-88749-10-9 (ISBN)978-91-88749-11-6 (ISBN)
Public defence
2018-12-19, Wigforssalen, Visionen, Kristian IV:s väg 3, Halmstad, 13:15 (English)
Opponent
Supervisors
Available from: 2018-11-26 Created: 2018-11-22 Last updated: 2019-04-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Vedder, BenjaminJonsson, Magnus

Search in DiVA

By author/editor
Vedder, BenjaminJonsson, Magnus
By organisation
Centre for Research on Embedded Systems (CERES)
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 245 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf