The automotive industry and the design of engines are strongly ruled by performance and legislation demands. In the valve train, besides the main function (transformation of rotation to translation movements) to fulfill, new requirements in environmental demands and performance in terms of wear are leading to more and more detailed studies of the cams and rollers. Wear reduction studies for prolonging lifetime of these components require decreasing the scale of observation down to roughness. Among the different wear stages of a component, the running-in is a crucial period which will greatly influence the lifetime and performance of components. The aim of this paper is to analyze the topography variations observed during the running-in of a camshaft on a valve train rig test. A truck engine's camshaft is run under realistic conditions and 3D surfaces are measured before and after the test by using relocation techniques. By measuring the very same surfaces before and after the experiment, a deep analysis of the running-in effects on surfaces can be performed. 3D surface roughness parameters are used in parallel with new proposed methods of analysis. As a result, the mechanisms involved during running-in are emphasized and can be used for further simulations and optimization of the cam roller contact. (C) 2014 Elsevier B.V. All rights reserved.