hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Low Complexity Algorithm for Efficient Relay Assignment in Unicast/Broadcast Wireless Networks
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES). Mälardalen University, Västerås, Sweden.ORCID iD: 0000-0001-6497-4099
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).ORCID iD: 0000-0002-6526-3931
2017 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Using relayers in wireless networks enables higher throughput, increased reliability or reduced delay. However, when building networks using commercially available hardware, concurrent transmissions by multiple relayers are generally not possible. Instead one specific relayer needs to be assigned for each transmission instant. If the decision regarding which relayer to assign, i.e., which relayer that has the best opportunity to successfully deliver the packet, can be taken online, just before the transmission is to take place, much can be gained. This is particularly the case in mobile networks, as a frequently changing network topology considerably affects the choice of a suitable relayer. To this end, this paper addresses the problem of online relay assignment by developing a low-complexity algorithm highly likely to find the optimal combination of relaying nodes that minimizes the resulting error probability at the targeted receiver(s) using a mix of simulated annealing and ant colony algorithms, such that relay assignments can be made online also in large networks. The algorithm differs from existing works in that it considers both unicast as well as broadcast and assumes that all nodes can overhear each other, as opposed to separating source nodes, relay nodes and destination nodes into three disjoint sets, which is generally not the case in most wireless networks.

Place, publisher, year, edition, pages
2017.
Keyword [en]
Relay Networks, Error Probability, Latency, Simulated Annealing, Ant Colony Optimization
National Category
Communication Systems
Identifiers
URN: urn:nbn:se:hh:diva-35051OAI: oai:DiVA.org:hh-35051DiVA: diva2:1143263
Conference
Vehicular Technology Conference, Sydney, Australia, 4-7 June, 2017
Projects
ACDCREADYSafeCOP
Funder
Knowledge FoundationELLIIT - The Linköping‐Lund Initiative on IT and Mobile Communications
Note

Additional funding: the ECSEL Joint Undertaking under grant agreements no 692529, and National funding

Available from: 2017-09-21 Created: 2017-09-21 Last updated: 2017-10-13
In thesis
1. Relaying for Timely and Reliable Applications in Wireless Networks
Open this publication in new window or tab >>Relaying for Timely and Reliable Applications in Wireless Networks
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Many emerging applications based on wireless networks involve distributed control. This implies high requirements on reliability, but also on predictable maximum delay. Further, for applications, it is vital to use off-the-shelf components, both due to cost constraints and requirements on interoperability with existing networks. This, in turn, implies that concurrent transmissions and multiuser detection are seldom possible. Instead, half-duplex time-division multiple access (TDMA) is typically used. Aiming to reduce the packet error rate given a deadline (a set of TDMA time-slots), this thesis proposes a relaying scheme, which can be implemented on top of off-the-shelf components. The relaying scheme selects the best sequence of relayers, given the number of time-slots allowed by the deadline, such that the resulting error probability is minimized at the targeted receiver(s). The scheme differs from existing work in that it considers both unicast as well as broadcast and assumes that all nodes can overhear each other, as opposed to separating source nodes, relay nodes and destination nodes into three disjoint sets. A full analysis of the resulting error probability is provided and complementary numerical results show that the proposed relay sequencing strategy significantly improves reliability given a certain maximum delay, or alternatively, reduces the delay, given a certain target reliability requirement. To illustrate the performance improvements of relay sequencing, it is incorporated in a platooning application. If the decision regarding which relayer to assign in each time-slot can be taken online, just before the transmission, much can be gained. To this end, a low-complexity algorithm is developed, which is shown to be highly likely to find the optimal combination of relaying nodes that minimizes the resulting error probability at the targeted receiver(s). Data packets in wireless automation networks is typically small. To enable timely and reliable all-to-all broadcast in such systems, relay sequencing using packet aggregation is proposed. The strategy assigns relayers to time slots, as well as determines which packets to aggregate in each slot, using the proposed low-complexity algorithm. To further increase the reliability, a clustering scheme is proposed. When a relayer in the sequence fails to overhear a correct copy, a backup relayer in the cluster takes over. This work thereby enables ultra-reliable communications with maintained end-toend delay using low-complexity techniques and off-the-shelf components.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2017. 68 p.
Series
Halmstad University Dissertations, 35
National Category
Communication Systems
Identifiers
urn:nbn:se:hh:diva-35172 (URN)978-91-87045-72-1 (ISBN)978-91-87045-73-8 (ISBN)
Public defence
2017-11-03, Wigforss, House J (Visionen), Kristian IV:s väg 3, Halmstad, 13:15 (English)
Opponent
Supervisors
Available from: 2017-10-17 Created: 2017-10-10 Last updated: 2017-10-17Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Hoang, Le-NamUhlemann, ElisabethJonsson, Magnus
By organisation
Centre for Research on Embedded Systems (CERES)
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar

Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf