Companion robots will be able to perform useful tasks in homes and public places, while also providing entertainment through playful interactions. “Playful” here means fun, happy, and humorous. A challenge is that generating playful motions requires a non-trivial understanding of how people attribute meaning and intentions. The literature suggests that playfulness can lead to some undesired impressions such as that a robot is obnoxious, untrustworthy, unsafe, moving in a meaningless fashion, or boring. To generate playfulness while avoiding such typical failures, we proposed a model for the scenario of a robot arm reaching for an object: some simplified movement patterns such as sinusoids are structured toward appearing helpful, clear about goals, safe, and combining a degree of structure and anomaly. We integrated our model into a mathematical framework (CHOMP) and built a new robot, Kakapo, to perform dynamically generated motions. The results of an exploratory user experiment were positive, suggesting that: Our proposed system was perceived as playful over the course of several minutes. Also a better impression resulted compared with an alternative playful system which did not use our proposed heuristics; furthermore a negative effect was observed for several minutes after showing the alternative motions, suggesting that failures are important to avoid. And, an inverted u-shaped correlation was observed between motion length and degree of perceived playfulness, suggesting that motions should neither be too short or too long and that length is also a factor which can be considered when generating playful motions. A short follow-up study provided some additional support for the idea that playful motions which seek to avoid failures can be perceived positively. Our intent is that these exploratory results will provide some insight for designing various playful robot motions, toward achieving some good interactions. © 2017, The Author(s).