Recently, functional gradient algorithms like CHOMP have been very successful in producing locally optimal motion plans for articulated robots. In this paper, we have adapted CHOMP to work with a non-holonomic vehicle such as an autonomous truck with a single trailer and a differential drive robot. An extended CHOMP with rolling constraints have been implemented on both of these setup which yielded feasible curvatures. This paper details the experimental integration of the extended CHOMP motion planner with the sensor fusion and control system of an autonomous Volvo FH-16 truck. It also explains the experiments conducted on the differential-drive robot. Initial experimental investigations and results conducted in a real-world environment show that CHOMP can produce smooth and collision-free trajectories for mobile robots and vehicles as well. In conclusion, this paper discusses the feasibility of employing CHOMP to mobile robots. © 2018, Springer International Publishing AG.
The authors would like to thank Volvo Trucks AB, Gothenburg for their contributions in this work. This work has been supported by the EU Project CargoANTs FP7-605598.