hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Turbulence influence on optimum tip speed ratio for a 200 kW vertical axis wind turbine
Halmstad University, School of Business, Engineering and Science, Biological and Environmental Systems (BLESS), Energiteknik. Uppsala University, Uppsala, Sweden.ORCID iD: 0000-0001-9982-5317
Uppsala University, Uppsala, Sweden.
Uppsala University, Uppsala, Sweden.
Halmstad University, School of Business, Engineering and Science, Biological and Environmental Systems (BLESS), Energiteknik.
Show others and affiliations
2016 (English)Conference paper, (Refereed)
Abstract [en]

The influence of turbulence intensity (TI) on the tip speed ratio for maximum power coefficient, here called λCp-max, is studied for a 200 kW VAWT H-rotor using logged data from a 14 month period with the H-rotor operating in wind speeds up to 9 m/s. The TI - λCp-max relation is examined by dividing 10 min mean values in different turbulence intensity ranges and producing multiple CP(λ) curves. A clear positive relation between TI and λCp-max is shown and is further strengthened as possible secondary effects are examined and deemed non-essential. The established relation makes it possible to tune the control strategy to enhance the total efficiency of the turbine.

Place, publisher, year, edition, pages
Bristol: Institute of Physics Publishing (IOPP), 2016. Vol. 753, 032048
Series
Journal of Physics Conference Series, ISSN 1742-6588 ; 753
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:hh:diva-32175DOI: 10.1088/1742-6596/753/3/032048OAI: oai:DiVA.org:hh-32175DiVA: diva2:1033749
Conference
6th Science of Making Torque from Wind Conference, Technical University of Munich, Munich, Germany, Oct. 5-7, 2016
Funder
StandUp
Available from: 2016-10-09 Created: 2016-10-09 Last updated: 2017-05-10Bibliographically approved
In thesis
1. Noise, eigenfrequencies and turbulence behavior of a 200 kW H-rotor vertical axis wind turbine
Open this publication in new window or tab >>Noise, eigenfrequencies and turbulence behavior of a 200 kW H-rotor vertical axis wind turbine
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Vertical-axis wind turbines (VAWTs) have with time been outrivaled by the today more common and economically feasible horizontal-axis wind turbines (HAWTs). However, VAWTs have several advantages which still make them interesting, for example, the VAWTs can have the drive train at ground level and it has been argued that they have lower noise emission. Other proposed advantages are suitability for both up-scaling and floating offshore platforms.

The work within this thesis is made in collaboration between Halmstad University and Uppsala University. A 200-kW semi-guy-wired VAWT H-rotor, owned by Uppsala University but situated in Falkenberg close to Halmstad, has been the main subject of the research although most results can be generalized to suit a typical H-rotor.

This thesis has three main topics regarding VAWTs: (1) how the wind energy extraction is influenced by turbulence, (2) aerodynamical noise generation and (3) eigenfrequencies of the semi-guy-wired tower.

The influence from turbulence on the wind energy extraction is studied by evaluating logged operational data and examining how the power curve and the tip-speed ratio for maximum Cp is impacted by turbulence. The work has showed that the T1-turbine has a good ability to extract wind energy at turbulent conditions, indicating an advantage in energy extraction at turbulent sites for VAWTs compared to HAWTs.The noise characteristics are studied experimentally, and models of the two most likely aerodynamic noise mechanisms are applied. Here, inflow-turbulence noise is deemed as the prevailing noise source rather than turbulent-boundary-layer trailing-edge noise (TBL-TE) which is the most important noise mechanism for HAWTs. The overall noise emission has also been measured and proven low compared to similar sized HAWTs.

The eigenfrequencies of a semi-guy-wired tower are also studied. Analytical expressions describing the first-mode eigenfrequency of both tower and guy wire has been derived and verified by experiments and simulations.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. 89 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1485
Keyword
VAWT, H-rotor, eigenfrequency, semi-guy-wired tower, noise emission, sound power level, microphone array, turbulence intensity, power curve
National Category
Energy Engineering
Identifiers
urn:nbn:se:hh:diva-33834 (URN)978-91-554-9834-4 (ISBN)
Public defence
2017-04-28, Häggsalen, Lägerhyddsvägen 1, Uppsala, 13:00 (English)
Opponent
Supervisors
Funder
StandUp
Available from: 2017-05-11 Created: 2017-05-10 Last updated: 2017-05-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Möllerström, ErikOttermo, FredricHylander, Jonny
By organisation
Energiteknik
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 104 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf