hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detecting and exploring deviating behaviour of smart home residents
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab). (SA3L - Situation Awareness for Ambient Assisted Living)ORCID-id: 0000-0001-8804-5884
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab). (SA3L)
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab). (SA3L)ORCID-id: 0000-0003-2185-8973
2016 (Engelska)Ingår i: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 55, s. 429-440Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

A system for detecting deviating human behaviour in a smart home environment is the long-term goal of this work. Clearly, such systems will be very important in ambient assisted living services. A new approach to modelling human behaviour patterns is suggested in this paper. The approach reveals promising results in unsupervised modelling of human behaviour and detection of deviations by using such a model. Human behaviour/activity in a short time interval is represented in a novel fashion by responses of simple non-intrusive sensors. Deviating behaviour is revealed through data clustering and analysis of associations between clusters and data vectors representing adjacent time intervals (analysing transitions between clusters). To obtain clusters of human behaviour patterns, first, a random forest is trained without using beforehand defined teacher signals. Then information collected in the random forest data proximity matrix is mapped onto the 2D space and data clusters are revealed there by agglomerative clustering. Transitions between clusters are modelled by the third order Markov chain.

Three types of deviations are considered: deviation in time, deviation in space and deviation in the transition between clusters of similar behaviour patterns.

The proposed modelling approach does not make any assumptions about the position, type, and relationship of sensors but is nevertheless able to successfully create and use a model for deviation detection-this is claimed as a significant result in the area of expert and intelligent systems. Results show that spatial and temporal deviations can be revealed through analysis of a 2D map of high dimensional data. It is demonstrated that such a map is stable in terms of the number of clusters formed. We show that the data clusters can be understood/explored by finding the most important variables and by analysing the structure of the most representative tree. © 2016 Elsevier Ltd. All rights reserved.

Ort, förlag, år, upplaga, sidor
Amsterdam: Elsevier, 2016. Vol. 55, s. 429-440
Nyckelord [en]
Ambient assisted living, Random forests, Stochastic neighbour embedding, Markov chain, Intelligent environments
Nationell ämneskategori
Annan elektroteknik och elektronik Signalbehandling
Identifikatorer
URN: urn:nbn:se:hh:diva-30594DOI: 10.1016/j.eswa.2016.02.030ISI: 000374811000033Scopus ID: 2-s2.0-84960082873OAI: oai:DiVA.org:hh-30594DiVA, id: diva2:915471
Projekt
CAISR / SA3L
Forskningsfinansiär
KK-stiftelsen, 2010/0271Tillgänglig från: 2016-03-30 Skapad: 2016-03-30 Senast uppdaterad: 2018-03-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Lundström, JensJärpe, EricVerikas, Antanas

Sök vidare i DiVA

Av författaren/redaktören
Lundström, JensJärpe, EricVerikas, Antanas
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
I samma tidskrift
Expert systems with applications
Annan elektroteknik och elektronikSignalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 325 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf