hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gait Event Detection in Real-World Environment for Long-Term Applications: Incorporating Domain Knowledge into Time-Frequency Analysis
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0003-4086-9221
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-4143-2948
2016 (Engelska)Ingår i: IEEE transactions on neural systems and rehabilitation engineering, ISSN 1534-4320, E-ISSN 1558-0210, Vol. 24, nr 12, s. 1363-1372Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

Detecting gait events is the key to many gait analysis applications that would benefit from continuous monitoring or long-term analysis. Most gait event detection algorithms using wearable sensors that offer a potential for use in daily living have been developed from data collected in controlled indoor experiments. However, for real-word applications, it is essential that the analysis is carried out in humans’ natural environment; that involves different gait speeds, changing walking terrains, varying surface inclinations and regular turns among other factors. Existing domain knowledge in the form of principles or underlying fundamental gait relationships can be utilized to drive and support the data analysis in order to develop robust algorithms that can tackle real-world challenges in gait analysis. This paper presents a novel approach that exhibits how domain knowledge about human gait can be incorporated into time-frequency analysis to detect gait events from longterm accelerometer signals. The accuracy and robustness of the proposed algorithm are validated by experiments done in indoor and outdoor environments with approximately 93,600 gait events in total. The proposed algorithm exhibits consistently high performance scores across all datasets in both, indoor and outdoor environments. © Copyright 2016 IEEE

Ort, förlag, år, upplaga, sidor
Piscataway, NJ: IEEE Press, 2016. Vol. 24, nr 12, s. 1363-1372
Nyckelord [en]
accelerometer, gait analysis, inertial sensors, morlet, principles of gait, stride parameters, wavelet transform
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:hh:diva-30468DOI: 10.1109/TNSRE.2016.2536278ISI: 000390559600010PubMedID: 26955043Scopus ID: 2-s2.0-85006253692OAI: oai:DiVA.org:hh-30468DiVA, id: diva2:909015
Tillgänglig från: 2016-03-04 Skapad: 2016-03-04 Senast uppdaterad: 2018-03-26Bibliografiskt granskad
Ingår i avhandling
1. Gait Event Detection in the Real World
Öppna denna publikation i ny flik eller fönster >>Gait Event Detection in the Real World
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Healthy gait requires a balance between various neuro-physiological systems and is considered an important indicator of a subject's physical and cognitive health status. As such, health-related applications would immensely benefit by performing long-term or continuous monitoring of subjects' gait in their natural environment and everyday lives. In contrast to stationary sensors such as motion capture systems and force plates, inertial sensors provide a good alternative for such gait analysis applications as they are miniature, cheap, mobile and can be easily integrated into wearable systems.

This thesis focuses on improving overall gait analysis using inertial sensors by providing a methodology for detecting gait events in real-world settings. Although the experimental protocols for such analysis have been restricted to only highly-controlled lab-like indoor settings; this thesis presents a new gait database that consists of data from gait activities carried out in both, indoor and outdoor environments. The thesis shows how domain knowledge about gait could be formulated and utilized to develop methods that are robust and can tackle real-world challenges. It also shows how the proposed approach can be generalized to estimate gait events from multiple body locations. Another aspect of this thesis is to demonstrate that the traditionally used temporal error metrics are not enough for presenting the overall performance of gait event detection methods. The thesis introduces how non-parametric tests can be used to complement them and provide a better overview.

The results of comparing the proposed methodology to state-of-the-art methods showed that the approach of incorporating domain knowledge into the time-frequency analysis of the signal was robust across different real-world scenarios and outperformed other methods, especially for the scenario involving variable gait speeds in outdoor settings. The methodology was also benchmarked on publicly available gait databases yielding good performance for estimating events from different body locations. To conclude, this thesis presents a road map for the development of gait analysis systems in real-world settings.

Ort, förlag, år, upplaga, sidor
Halmstad: Halmstad University Press, 2018. s. 73
Nyckelord
gait analysis, gait event detection, wearable sensors, accelerometers
Nationell ämneskategori
Signalbehandling Annan medicinteknik
Identifikatorer
urn:nbn:se:hh:diva-36525 (URN)978-91-87045-86-8 (ISBN)978-91-87045-87-5 (ISBN)
Disputation
2018-03-14, Wigforssalen, Visionen, Kristian IV:s väg 3, Halmstad, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-03-26 Skapad: 2018-03-26 Senast uppdaterad: 2018-03-26Bibliografiskt granskad

Open Access i DiVA

fulltext(3036 kB)1115 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3036 kBChecksumma SHA-512
acb4aaa2724b810a28a5bbf977c3411e3e97ba9d91bff99074fc783a727aacc70306c100e04c26fa87c887bad88cc403008dbf8e9224ba342cf7d221006a43c6
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Khandelwal, SiddharthaWickström, Nicholas

Sök vidare i DiVA

Av författaren/redaktören
Khandelwal, SiddharthaWickström, Nicholas
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
I samma tidskrift
IEEE transactions on neural systems and rehabilitation engineering
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1115 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 873 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf