hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Time Domain Features of Multi-channel EMG Applied to Prediction of Physiological Parameters in Fatiguing Bicycling Exercises
Kaunas University of Technology, Kaunas, Lithuania.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0003-2185-8973
Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, Bio- och miljösystemforskning (BLESS).ORCID-id: 0000-0002-9337-5113
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
2015 (engelsk)Inngår i: Frontiers in Artificial Intelligence and Applications, ISSN 0922-6389, E-ISSN 1879-8314, Vol. 278, s. 118-127Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A set of novel time-domain features characterizing multi-channel surface EMG (sEMG) signals of six muscles (rectus femoris, vastus lateralis, and semitendinosus of each leg) is proposed for prediction of physiological parameters considered important in cycling: blood lactate concentration and oxygen uptake. Fifty one different features, including phase shifts between muscles, active time percentages, sEMG amplitudes, as well as symmetry measures between both legs, were defined from sEMG data and used to train linear and random forest models. The random forests models achieved the coefficient of determination R2 = 0:962 (lactate) and R2 = 0:980 (oxygen). The linear models were less accurate. Feature pruning applied enabled creating accurate random forest models (R2 >0:9) using as few as 7 (lactate) or 4 (oxygen) time-domain features. sEMG amplitude was important for both types of models. Models to predict lactate also relied on measurements describing interaction between front and back muscles, while models to predict oxygen uptake relied on front muscles only, but also included interactions between the two legs. © 2015 The authors and IOS Press. All rights reserved.

sted, utgiver, år, opplag, sider
Amsterdam: IOS Press, 2015. Vol. 278, s. 118-127
Emneord [en]
random forests, electromyography, muscle activation patterns, fatigue detection, bicycling
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-29666DOI: 10.3233/978-1-61499-589-0-118Scopus ID: 2-s2.0-84963682719OAI: oai:DiVA.org:hh-29666DiVA, id: diva2:862405
Tilgjengelig fra: 2015-10-22 Laget: 2015-10-22 Sist oppdatert: 2018-03-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Verikas, AntanasOlsson, CharlotteWiberg, Per-Arne

Søk i DiVA

Av forfatter/redaktør
Verikas, AntanasOlsson, CharlotteWiberg, Per-Arne
Av organisasjonen
I samme tidsskrift
Frontiers in Artificial Intelligence and Applications

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 189 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf