hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Holistic Smart Home Demonstrator for Anomaly Detection and Response
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system. (CAISR)ORCID-id: 0000-0001-8804-5884
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0001-6708-0816
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
2015 (engelsk)Inngår i: 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), Piscataway, NJ: IEEE Press, 2015, s. 330-335Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Applying machine learning methods in scenarios involving smart homes is a complex task. The many possible variations of sensors, feature representations, machine learning algorithms, middle-ware architectures, reasoning/decision schemes, and interactive strategies make research and development tasks non-trivial to solve.In this paper, the use of a portable, flexible and holistic smart home demonstrator is proposed to facilitate iterative development and the acquisition of feedback when testing in regard to the above-mentioned issues. Specifically, the focus in this paper is on scenarios involving anomaly detection and response. First a model for anomaly detection is trained with simulated data representing a priori knowledge pertaining to a person living in an apartment. Then a reasoning mechanism uses the trained model to infer and plan a reaction to deviating activities. Reactions are carried out by a mobile interactive robot to investigate if a detected anomaly constitutes a true emergency. The implemented demonstrator was able to detect and respond properly in 18 of 20 trials featuring normal and deviating activity patterns, suggesting the feasibility of the proposed approach for such scenarios. © IEEE 2015

sted, utgiver, år, opplag, sider
Piscataway, NJ: IEEE Press, 2015. s. 330-335
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-27740DOI: 10.1109/PERCOMW.2015.7134058ISI: 000380510900075Scopus ID: 2-s2.0-84946061065ISBN: 978-1-4799-8425-1 OAI: oai:DiVA.org:hh-27740DiVA, id: diva2:814235
Konferanse
SmartE: Closing the Loop – The 2nd IEEE PerCom Workshop on Smart Environments, St. Louis, Missouri, USA, March 23-27, 2015
Prosjekter
SA3L, CAISR
Forskningsfinansiär
Knowledge FoundationTilgjengelig fra: 2015-05-26 Laget: 2015-02-09 Sist oppdatert: 2018-03-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Lundström, JensOurique de Morais, WagnerCooney, Martin

Søk i DiVA

Av forfatter/redaktør
Lundström, JensOurique de Morais, WagnerCooney, Martin
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 388 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf