hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Holistic Smart Home Demonstrator for Anomaly Detection and Response
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system. (CAISR)ORCID-id: 0000-0001-8804-5884
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0001-6708-0816
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
2015 (Engelska)Ingår i: 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), Piscataway, NJ: IEEE Press, 2015, s. 330-335Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Applying machine learning methods in scenarios involving smart homes is a complex task. The many possible variations of sensors, feature representations, machine learning algorithms, middle-ware architectures, reasoning/decision schemes, and interactive strategies make research and development tasks non-trivial to solve.In this paper, the use of a portable, flexible and holistic smart home demonstrator is proposed to facilitate iterative development and the acquisition of feedback when testing in regard to the above-mentioned issues. Specifically, the focus in this paper is on scenarios involving anomaly detection and response. First a model for anomaly detection is trained with simulated data representing a priori knowledge pertaining to a person living in an apartment. Then a reasoning mechanism uses the trained model to infer and plan a reaction to deviating activities. Reactions are carried out by a mobile interactive robot to investigate if a detected anomaly constitutes a true emergency. The implemented demonstrator was able to detect and respond properly in 18 of 20 trials featuring normal and deviating activity patterns, suggesting the feasibility of the proposed approach for such scenarios. © IEEE 2015

Ort, förlag, år, upplaga, sidor
Piscataway, NJ: IEEE Press, 2015. s. 330-335
Nationell ämneskategori
Signalbehandling Annan elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:hh:diva-27740DOI: 10.1109/PERCOMW.2015.7134058ISI: 000380510900075Scopus ID: 2-s2.0-84946061065ISBN: 978-1-4799-8425-1 OAI: oai:DiVA.org:hh-27740DiVA, id: diva2:814235
Konferens
SmartE: Closing the Loop – The 2nd IEEE PerCom Workshop on Smart Environments, St. Louis, Missouri, USA, March 23-27, 2015
Projekt
SA3L, CAISR
Forskningsfinansiär
KK-stiftelsenTillgänglig från: 2015-05-26 Skapad: 2015-02-09 Senast uppdaterad: 2018-03-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Lundström, JensOurique de Morais, WagnerCooney, Martin

Sök vidare i DiVA

Av författaren/redaktören
Lundström, JensOurique de Morais, WagnerCooney, Martin
Av organisationen
Laboratoriet för intelligenta systemCAISR Centrum för tillämpade intelligenta system (IS-lab)
SignalbehandlingAnnan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 388 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf