hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Exploring sustained phonation recorded with acoustic and contact microphones to screen for laryngeal disorders
Department of Electric Power Systems, Kaunas University of Technology, Kaunas, Lithuania.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab). Department of Electric Power Systems, Kaunas University of Technology, Kaunas, Lithuania.ORCID-id: 0000-0003-2185-8973
Department of Electric Power Systems, Kaunas University of Technology, Kaunas, Lithuania.
Department of Electric Power Systems, Kaunas University of Technology, Kaunas, Lithuania.
Vise andre og tillknytning
2014 (engelsk)Inngår i: 2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE), Piscataway, NJ: IEEE Press, 2014, s. 125-132Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Exploration of various features and different structures of data dependent random forests in screening for laryngeal disorders through analysis of sustained phonation recorded by acoustic and contact microphones is the main objective of this study. To obtain a versatile characterization of voice samples, 14 different sets of features were extracted and used to build an accurate classifier to distinguish between normal and pathological cases. We proposed a new, data dependent random forest-based, way to combine information available from the different feature sets. An approach to exploring data and decisions made by a random forest was also presented. Experimental investigations using a mixed gender database of 273 subjects have shown that the Perceptual linear predictive cepstral coefficients (PLPCC) was the best feature set for both microphones. However, the LP-coefficients and LPCT-coefficients feature sets exhibited good performance in the acoustic microphone case only. Models designed using the acoustic microphone data significantly outperformed the ones built using data recorded by the contact microphone. The contact microphone did not bring any additional information useful for classification. The proposed data dependent random forest significantly outperformed traditional designs. © 2014 IEEE.

sted, utgiver, år, opplag, sider
Piscataway, NJ: IEEE Press, 2014. s. 125-132
Emneord [en]
Random forest, Classification, Laryngeal disorder
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-27447DOI: 10.1109/CICARE.2014.7007844ISI: 000380576000018Scopus ID: 2-s2.0-84922496359ISBN: 978-1-4799-4527-6 (digital)ISBN: 978-1-4799-4526-9 (digital)OAI: oai:DiVA.org:hh-27447DiVA, id: diva2:777719
Konferanse
CICARE 2014 – 2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health, Orlando, Florida, USA, December 9-12, 2014
Merknad

Funding: grant VP1-3.1-SMM-10-V from the Ministry of Education and Science of Republic of Lithuania

Tilgjengelig fra: 2015-01-08 Laget: 2015-01-08 Sist oppdatert: 2018-03-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Verikas, AntanasHållander, Magnus

Søk i DiVA

Av forfatter/redaktør
Verikas, AntanasHållander, Magnus
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 205 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf