hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fake Iris Detection: A Comparison Between Near-Infrared and Visible Images
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system.ORCID-id: 0000-0002-1400-346X
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-4929-1262
2014 (Engelska)Ingår i: Proceedings: 10th International Conference on Signal-Image Technology and Internet-Based Systems, SITIS 2014 / [ed] Kokou Yetongnon, Albert Dipanda & Richard Chbeir, Piscataway, NJ: IEEE Computer Society, 2014, s. 546-553Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Fake iris detection has been studied so far using near-infrared sensors (NIR), which provide grey scale-images, i.e. With luminance information only. Here, we incorporate into the analysis images captured in visible range, with color information, and perform comparative experiments between the two types of data. We employ Gray-Level Cocurrence textural features and SVM classifiers. These features analyze various image properties related with contrast, pixel regularity, and pixel co-occurrence statistics. We select the best features with the Sequential Forward Floating Selection (SFFS) algorithm. We also study the effect of extracting features from selected (eye or periocular) regions only. Our experiments are done with fake samples obtained from printed images, which are then presented to the same sensor than the real ones. Results show that fake images captured in NIR range are easier to detect than visible images (even if we down sample NIR images to equate the average size of the iris region between the two databases). We also observe that the best performance with both sensors can be obtained with features extracted from the whole image, showing that not only the eye region, but also the surrounding periocular texture is relevant for fake iris detection. An additional source of improvement with the visible sensor also comes from the use of the three RGB channels, in comparison with the luminance image only. A further analysis also reveals that some features are best suited to one particular sensor than the others. © 2014 IEEE

Ort, förlag, år, upplaga, sidor
Piscataway, NJ: IEEE Computer Society, 2014. s. 546-553
Nyckelord [en]
biometrics, attacks, fake iris, near-infrared iris, visible iris, GLCM features
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:hh:diva-26870DOI: 10.1109/SITIS.2014.104ISI: 000380564200080Scopus ID: 2-s2.0-84928540084ISBN: 978-1-4799-7978-3 (tryckt)OAI: oai:DiVA.org:hh-26870DiVA, id: diva2:757570
Konferens
Workshop on Insight on Eye Biometrics, IEB, in conjunction with the 10th International Conference on Signal-Image Technology and Internet-Based Systems, SITIS 2014, Marrakech, Morocco, 23-27 November, 2014
Forskningsfinansiär
Vetenskapsrådet, 2012-4313KK-stiftelsen
Anmärkning

Article number: 7081596; Author F. A.-F. thanks the Swedish Research Council and the EU for for funding his postdoctoral research. Authors acknowledge the CAISR program of the Swedish Knowledge Foundation and the EU COST Action IC1106. Authors also thank the Biometric Recognition Group (ATVS-UAM) for making the ATVS-Flr database available.

Tillgänglig från: 2014-10-22 Skapad: 2014-10-22 Senast uppdaterad: 2018-03-22Bibliografiskt granskad

Open Access i DiVA

fulltext(2775 kB)143 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2775 kBChecksumma SHA-512
3745d47b8bdc1dd23ecfde73e85e99f4498ed4c2a4d0e5365eea8c8afcbe276432432421cf8c0cf713a0cdd27b6b7ff7501b8eba51ea277e386519258da9cc63
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Alonso-Fernandez, FernandoBigun, Josef

Sök vidare i DiVA

Av författaren/redaktören
Alonso-Fernandez, FernandoBigun, Josef
Av organisationen
Laboratoriet för intelligenta systemCAISR Centrum för tillämpade intelligenta system (IS-lab)
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 143 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 668 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf