hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using Histograms to Find Compressor Deviations in Bus Fleet Data
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-3034-6630
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-7796-5201
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0001-5163-2997
2014 (Engelska)Ingår i: The SAIS Workshop 2014 Proceedings, Swedish Artificial Intelligence Society (SAIS) , 2014, s. 123-132Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Cost effective methods for predictive maintenance are increasingly demanded in the automotive industry. One solution is to utilize the on-board signals streams on each vehicle and build self-organizing systems that discover data deviations within a fleet. In this paper we evaluate histograms as features for describing and comparing individual vehicles. The results are based on a long-term field test with nineteen city buses operating around Kungsbacka in Halland. The purpose of this work is to investigate ways of discovering abnormal behaviors and irregularities between histograms of on-board signals, here specifically focusing on air pressure. We compare a number of distance measures and analyze the variability of histograms collected over different time spans. Clustering algorithms are used to discover structure in the data and track how this changes over time. As data are compared across the fleet, observed deviations should be matched against (often imperfect) reference data coming from workshop maintenance and repair databases.

Ort, förlag, år, upplaga, sidor
Swedish Artificial Intelligence Society (SAIS) , 2014. s. 123-132
Nyckelord [en]
Predictive maintenance, Diagnostics, Deviation detection
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:hh:diva-26572OAI: oai:DiVA.org:hh-26572DiVA, id: diva2:749489
Konferens
The Swedish AI Society (SAIS) Workshop 2014, Stockholm, Sweden, May 22-23, 2014
Tillgänglig från: 2014-09-24 Skapad: 2014-09-24 Senast uppdaterad: 2016-11-28Bibliografiskt granskad
Ingår i avhandling
1. A Self-Organized Fault Detection Method for Vehicle Fleets
Öppna denna publikation i ny flik eller fönster >>A Self-Organized Fault Detection Method for Vehicle Fleets
2016 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

A fleet of commercial heavy-duty vehicles is a very interesting application arena for fault detection and predictive maintenance. With a highly digitized electronic system and hundreds of sensors mounted on-board a modern bus, a huge amount of data is generated from daily operations.

This thesis and appended papers present a study of an autonomous framework for fault detection, using the data gathered from the regular operation of vehicles. We employed an unsupervised deviation detection method, called Consensus Self-Organising Models (COSMO), which is based on the concept of ‘wisdom of the crowd’. It assumes that the majority of the group is ‘healthy’; by comparing individual units within the group, deviations from the majority can be considered as potentially ‘faulty’. Information regarding detected anomalies can be utilized to prevent unplanned stops.

This thesis demonstrates how knowledge useful for detecting faults and predicting failures can be autonomously generated based on the COSMO method, using different generic data representations. The case study in this work focuses on vehicle air system problems of a commercial fleet of city buses. We propose an approach to evaluate the COSMO method and show that it is capable of detecting various faults and indicates upcoming air compressor failures. A comparison of the proposed method with an expert knowledge based system shows that both methods perform equally well. The thesis also analyses the usage and potential benefits of using the Echo State Network as a generic data representation for the COSMO method and demonstrates the capability of Echo State Network to capture interesting characteristics in detecting different types of faults.

Ort, förlag, år, upplaga, sidor
Halmstad: Halmstad University Press, 2016. s. 116
Serie
Halmstad University Dissertations ; 27
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
urn:nbn:se:hh:diva-32489 (URN)978-91-87045-57-8 (ISBN)978-91-87045-56-1 (ISBN)
Presentation
2016-12-16, Halda, Kristian IV:s väg 3, 301 18 Halmstad, Halmstad, 10:00 (Engelska)
Opponent
Handledare
Projekt
In4Uptime
Forskningsfinansiär
VINNOVA
Tillgänglig från: 2016-11-28 Skapad: 2016-11-25 Senast uppdaterad: 2016-11-28Bibliografiskt granskad

Open Access i DiVA

fulltext(1514 kB)148 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1514 kBChecksumma SHA-512
c5df4bc2e827779fe6cb4ad9744032764ccb7140e9b13f81e7af1bd0ce9ff9c7fa015d2b92fbba56ab8c10a76248a8423814d562cdeea1733a1f10906e39f2c4
Typ fulltextMimetyp application/pdf

Personposter BETA

Fan, YuantaoNowaczyk, SławomirRögnvaldsson, Thorsteinn

Sök vidare i DiVA

Av författaren/redaktören
Fan, YuantaoNowaczyk, SławomirRögnvaldsson, Thorsteinn
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 148 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 790 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf