hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Optical Flow Features for Event Detection
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE).
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE).
2014 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

In this thesis, we employ optical flow features for the detection of the rigid or non‐rigid single object on an input video. For optical flow estimation, we use the Point Line [PL] method [2] (as a local method) to estimate the motion of the image sequence which is generated from the input video stream. Although the Lukas and Kanade [LK] is a popular local method for estimation of the optical flow, it is weak in dealing with the linear symmetric images even by use of regularization [e.g. Tikhonov]. The PL method is more powerful than the LK method and can properly separate both line flow and point flow. For dealing with rapidly changing data in some part of an image (high motion problem), a gaussian pyramid with five levels (different image resolutions) is employed. In this way, the pyramid height (Level) must be chosen properly according to the maximum optical flow that we expect in each section of the image without iteration. After determining the best‐estimated optical flow vector for every pixel, the algorithm should detect an object on video with its direction to the right or left. By using techniques such as segmentation and averaging the magnitude of flow vectors the program can detect and distinguish rigid objects (e.g. a car) and non‐rigid objects (e.g. a human). Finally the algorithm makes a new video output that includes detected object with flow vectors, the pyramid levels map which has been used for optical flow estimation and a respective binary image.

sted, utgiver, år, opplag, sider
2014. , s. 67
Emneord [en]
optical flow, event detection
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-25016Lokal ID: IDE1324OAI: oai:DiVA.org:hh-25016DiVA, id: diva2:711638
Fag / kurs
Computer science and engineering
Presentation
2013-12-19, 08:00 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2014-04-11 Laget: 2014-04-10 Sist oppdatert: 2014-04-11bibliografisk kontrollert

Open Access i DiVA

Final thesis report(5907 kB)558 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 5907 kBChecksum SHA-512
0bd7d5390dd67eb470a1e3f1d7407aca35bb6cf656a00ed316fa206941b9b7f87f694230d527628ccc5ddb765b1830a4c083a004fdcc6bc178f74e348c079aa5
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 558 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 600 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf