hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Analysis of Truck Compressor Failures Based on Logged Vehicle Data
Volvo Group Trucks Technology, Advanced Technology & Research, Göteborg, Sweden.ORCID-id: 0000-0001-8255-1276
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-7796-5201
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0001-5163-2997
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
2013 (Engelska)Ingår i: / [ed] Hamid Reza Arabnia, CSREA Press, 2013Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In multiple industries, including automotive one, predictive maintenance is becoming more and more important, especially since the focus shifts from product to service-based operation. It requires, among other, being able to provide customers with uptime guarantees. It is natural to investigate the use of data mining techniques, especially since the same shift of focus, as well as technological advancements in the telecommunication solutions, makes long-term data collection more widespread.

In this paper we describe our experiences in predicting compressor faults using data that is logged on-board Volvo trucks. We discuss unique challenges that are posed by the specifics of the automotive domain. We show that predictive maintenance is possible and can result in significant cost savings, despite the relatively low amount of data available. We also discuss some of the problems we have encountered by employing out-of-the-box machine learning solutions, and identify areas where our task diverges from common assumptions underlying the majority of data mining research.

Ort, förlag, år, upplaga, sidor
CSREA Press, 2013.
Nyckelord [en]
Data Mining, Machine Learning, Fault Prediction, Automotive Diagnostics, Logged Vehicle Data
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:hh:diva-23457ISBN: 1-60132-235-6 (tryckt)OAI: oai:DiVA.org:hh-23457DiVA, id: diva2:644582
Konferens
9th International Conference on Data Mining, Las Vegas, Nevada, USA, July 22–25, 2013
Forskningsfinansiär
VINNOVATillgänglig från: 2013-08-31 Skapad: 2013-08-31 Senast uppdaterad: 2018-03-22Bibliografiskt granskad
Ingår i avhandling
1. Machine learning methods for vehicle predictive maintenance using off-board and on-board data
Öppna denna publikation i ny flik eller fönster >>Machine learning methods for vehicle predictive maintenance using off-board and on-board data
2014 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Vehicle uptime is getting increasingly important as the transport solutions become more complex and the transport industry seeks new ways of being competitive. Traditional Fleet Management Systems are gradually extended with new features to improve reliability, such as better maintenance planning. Typical diagnostic and predictive maintenance methods require extensive experimentation and modelling during development. This is unfeasible if the complete vehicle is addressed as it would require too much engineering resources.

This thesis investigates unsupervised and supervised methods for predicting vehicle maintenance. The methods are data driven and use extensive amounts of data, either streamed, on-board data or historic and aggregated data from off-board databases. The methods rely on a telematics gateway that enables vehicles to communicate with a back-office system. Data representations, either aggregations or models, are sent wirelessly to an off-board system which analyses the data for deviations. These are later associated to the repair history and form a knowledge base that can be used to predict upcoming failures on other vehicles that show the same deviations.

The thesis further investigates different ways of doing data representations and deviation detection. The first one presented, COSMO, is an unsupervised and self-organised approach demonstrated on a fleet of city buses. It automatically comes up with the most interesting on-board data representations and uses a consensus based approach to isolate the deviating vehicle. The second approach outlined is a super-vised classification based on earlier collected and aggregated vehicle statistics in which the repair history is used to label the usage statistics. A classifier is trained to learn patterns in the usage data that precede specific repairs and thus can be used to predict vehicle maintenance. This method is demonstrated for failures of the vehicle air compressor and based on AB Volvo’s database of vehicle usage statistics.

Ort, förlag, år, upplaga, sidor
Halmstad: Halmstad University Press, 2014. s. 96
Serie
Halmstad University Dissertations ; 9
Nationell ämneskategori
Signalbehandling
Identifikatorer
urn:nbn:se:hh:diva-27869 (URN)978-91-87045-18-9 (ISBN)978-91-87045-17-2 (ISBN)
Presentation
2014-09-26, Haldasalen, Visionen, Halmstad University, Halmstad, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
VINNOVA
Tillgänglig från: 2015-03-12 Skapad: 2015-02-19 Senast uppdaterad: 2015-03-17Bibliografiskt granskad

Open Access i DiVA

DMI8084(176 kB)603 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 176 kBChecksumma SHA-512
5a655a6339997b756bea513e55ddcd98a6bb44dd535ae572396eb04868ceee92b04fac1636699e4aac0cdf63ddbc74f9f714b6570d01c989d9412022f5968e7e
Typ fulltextMimetyp application/pdf

Övriga länkar

Full text

Personposter BETA

Prytz, RuneNowaczyk, SławomirRögnvaldsson, ThorsteinnByttner, Stefan

Sök vidare i DiVA

Av författaren/redaktören
Prytz, RuneNowaczyk, SławomirRögnvaldsson, ThorsteinnByttner, Stefan
Av organisationen
CAISR Centrum för tillämpade intelligenta system (IS-lab)
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 603 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 759 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf