hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A novel approach to designing an adaptive committee applied to predicting company’s future performance
Kaunas University of Technology, Kaunas, Lithuania.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system. Kaunas University of Technology, Kaunas, Lithuania.ORCID-id: 0000-0003-2185-8973
Kaunas University of Technology, Kaunas, Lithuania.
Kaunas University of Technology, Kaunas, Lithuania.
2013 (engelsk)Inngår i: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 40, nr 6, s. 2051-2057Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This article presents an approach to designing an adaptive, data dependent, committee of models applied to prediction of several financial attributes for assessing company's future performance. Current liabilities/Current assets, Total liabilities/Total assets, Net income/Total assets, and Operating Income/Total liabilities are the attributes used in this paper. A self-organizing map (SOM) used for data mapping and analysis enables building committees, which are specific (committee size and aggregation weights) for each SOM node. The number of basic models aggregated into a committee and the aggregation weights depend on accuracy of basic models and their ability to generalize in the vicinity of the SOM node. A random forest is used a basic model in this study. The developed technique was tested on data concerning companies from ten sectors of the healthcare industry of the United States and compared with results obtained from averaging and weighted averaging committees. The proposed adaptivity of a committee size and aggregation weights led to a statistically significant increase in prediction accuracy if compared to other types of committees. © 2012 Elsevier Ltd. All rights reserved.

sted, utgiver, år, opplag, sider
Oxford: Pergamon Press, 2013. Vol. 40, nr 6, s. 2051-2057
Emneord [en]
Committee, Random forest, SOM, Data proximity, Financial attribute
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-22974DOI: 10.1016/j.eswa.2012.10.018ISI: 000315607200014Scopus ID: 2-s2.0-84872852144OAI: oai:DiVA.org:hh-22974DiVA, id: diva2:630760
Tilgjengelig fra: 2013-06-19 Laget: 2013-06-19 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Verikas, Antanas

Søk i DiVA

Av forfatter/redaktør
Verikas, Antanas
Av organisasjonen
I samme tidsskrift
Expert systems with applications

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 193 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf