hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Heat load patterns in district heating substations
Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, Bio- och miljösystemforskning (BLESS), Energiteknik.
Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, Bio- och miljösystemforskning (BLESS).ORCID-id: 0000-0001-9069-0807
2013 (Engelska)Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 108, s. 176-183Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Future smart energy grids will require more information exchange between interfaces in the energy system. One interface where dearth of information exists is in district heating substations, being the interfaces between the distribution network and the customer building heating systems. Previously, manual meter readings were collected once or a few times a year. Today, automatic meter readings are available resulting in low cost hourly meter reading data. In a district heating system, errors and deviations in customer substations propagates through the network to the heat supply plants. In order to reduce future customer and heat supplier costs, a demand appears for smart functions identifying errors and deviations in the substations. Hereby, also a research demand appears for defining normal and abnormal heat load patterns in customer substations. The main purpose with this article is to perform an introductory analysis of several high resolution measurements in order to provide valuable information about substations for creating future applications in smart heat grids. One year of hourly heat meter readings from 141 substations in two district heating networks were analysed. The connected customer buildings were classified into five different customer categories and four typical heat load patterns were identified. Two descriptive parameters, annual relative daily variation and annual relative seasonal variation, were defined from each 1 year sequence for identifying normal and abnormal heat load patterns. The three major conclusions are associated both with the method used and the objects analysed. First, normal heat load patterns vary with applied control strategy, season, and customer category. Second, it is possible to identify obvious outliers compared to normal heat loads with the two descriptive parameters used in this initial analysis. Third, the developed method can probably be enhanced by redefining the customer categories by their indoor activities.

Ort, förlag, år, upplaga, sidor
Oxford: Pergamon Press, 2013. Vol. 108, s. 176-183
Nyckelord [en]
District heating, Heat load variation, Automatic meter reading, Heat load pattern, Smart heat grids, Smart energy grids
Nationell ämneskategori
Energiteknik
Identifikatorer
URN: urn:nbn:se:hh:diva-22167DOI: 10.1016/j.apenergy.2013.02.062ISI: 000320484900019Scopus ID: 2-s2.0-84876321273OAI: oai:DiVA.org:hh-22167DiVA, id: diva2:621800
Tillgänglig från: 2013-05-17 Skapad: 2013-05-17 Senast uppdaterad: 2020-05-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Gadd, HenrikWerner, Sven

Sök vidare i DiVA

Av författaren/redaktören
Gadd, HenrikWerner, Sven
Av organisationen
EnergiteknikBio- och miljösystemforskning (BLESS)
I samma tidskrift
Applied Energy
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 601 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf