hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Iris Recognition Based on SIFT Features
Escuela Politecnica Superior, Univ. Autonoma de Madrid, Spain. (ATVS/Biometric Recognition Group)ORCID-id: 0000-0002-1400-346X
Universidad Autonoma de Madrid, Spain.
Universidad Autonoma de Madrid, Spain.
Universidad Autonoma de Madrid, Spain.
2009 (Engelska)Ingår i: 2009 First IEEE International Conference on Biometrics, Identity and Securit, 2009, s. 1-8Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Biometric methods based on iris images are believed to allow very high accuracy, and there has been an explosion of interest in iris biometrics in recent years. In this paper, we use the Scale Invariant Feature Transformation (SIFT) for recognition using iris images. Contrarily to traditional iris recognition systems, the SIFT approach does not rely on the transformation of the iris pattern to polar coordinates or on highly accurate segmentation, allowing less constrained image acquisition conditions. We extract characteristic SIFT feature points in scale space and perform matching based on the texture information around the feature points using the SIFT operator. Experiments are done using the BioSec multimodal database, which includes 3,200 iris images from 200 individuals acquired in two different sessions. We contribute with the analysis of the influence of different SIFT parameters on the recognition performance. We also show the complementarity between the SIFT approach and a popular matching approach based on transformation to polar coordinates and Log-Gabor wavelets. The combination of the two approaches achieves significantly better performance than either of the individual schemes, with a performance improvement of 24% in the Equal Error Rate.

Ort, förlag, år, upplaga, sidor
2009. s. 1-8
Nationell ämneskategori
Signalbehandling
Identifikatorer
URN: urn:nbn:se:hh:diva-21215DOI: 10.1109/BIDS.2009.5507529Scopus ID: 2-s2.0-77954979896ISBN: 978-142445276-7 OAI: oai:DiVA.org:hh-21215DiVA, id: diva2:589332
Konferens
IEEE Proc. Intl. Conf. on Biometrics, Identity and Security, BIDS, Tampa, FL, Sept 22-23, 2009
Tillgänglig från: 2013-01-17 Skapad: 2013-01-16 Senast uppdaterad: 2015-09-29Bibliografiskt granskad

Open Access i DiVA

fulltext(2292 kB)902 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2292 kBChecksumma SHA-512
7046c4c9ace2c22919b0729ad6b521ee21ed50d244425ae8ffc2876cbfefa48897c6dd7b4a8336d3e7ae84e2b17180cff1649c3ea7c53a415d20d9f5b59aa61a
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Alonso-Fernandez, Fernando

Sök vidare i DiVA

Av författaren/redaktören
Alonso-Fernandez, Fernando
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 902 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 289 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf