hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessing, exploring, and monitoring quality of offset colour prints
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system.ORCID-id: 0000-0001-8804-5884
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system. Kaunas University of Technology, Kaunas, Lithuania.ORCID-id: 0000-0003-2185-8973
Hylte Mill, Hyltebruk, Sweden.
V-TAB, Hisingsbacka, Sweden.
2013 (Engelska)Ingår i: Measurement, ISSN 0263-2241, E-ISSN 1873-412X, Vol. 46, nr 4, s. 1427-1441Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Variations in offset print quality relate to numerous parameters of printing press and paper. To maintain a constant high print quality press operators need to assess, explore and monitor quality of prints. Today assessment is mainly done manually. This paper presents a novel system for assessing and predicting values of print quality attributes, where the adopted, random forests (RFs)-based, modeling approach also allows quantifying the influence of different paper and press parameters on print quality. In contrast to other print quality assessment systems the proposed system utilises common, simple print marks known as double grey-bars. Novel virtual sensors assessing print quality attributes using images of double grey-bars are presented. The inferred influence of paper and printing press parameters on quality of colour prints shows clear relation with known print quality conditions. Thorough analysis and categorisation of related work is also given in the paper. (C) 2012 Elsevier Ltd. All rights reserved.

Ort, förlag, år, upplaga, sidor
Amsterdam: Elsevier, 2013. Vol. 46, nr 4, s. 1427-1441
Nyckelord [en]
Virtual sensor, Random forests, Print quality assessment, Decision support, Variable importance, Bar-code reader
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:hh:diva-20278DOI: 10.1016/j.measurement.2012.11.037ISI: 000316431100009Scopus ID: 2-s2.0-84873030720OAI: oai:DiVA.org:hh-20278DiVA, id: diva2:581760
Projekt
PPQ
Forskningsfinansiär
KK-stiftelsen, 2007/0279Tillgänglig från: 2013-01-02 Skapad: 2013-01-02 Senast uppdaterad: 2018-01-11Bibliografiskt granskad
Ingår i avhandling
1. Situation Awareness in Colour Printing and Beyond
Öppna denna publikation i ny flik eller fönster >>Situation Awareness in Colour Printing and Beyond
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Machine learning methods are increasingly being used to solve real-world problems in the society. Often, the complexity of the methods are well hidden for users. However, integrating machine learning methods in real-world applications is not a straightforward process and requires knowledge both about the methods and domain knowledge of the problem. Two such domains are colour print quality assessment and anomaly detection in smart homes, which are currently driven by manual monitoring of complex situations. The goal of the presented work is to develop methods, algorithms and tools to facilitate monitoring and understanding of the complex situations which arise in colour print quality assessment and anomaly detection for smart homes. The proposed approach builds on the use and adaption of supervised and unsupervised machine learning methods.

Novel algorithms for computing objective measures of print quality in production are proposed in this work. Objective measures are also modelled to study how paper and press parameters influence print quality. Moreover, a study on how print quality is perceived by humans is presented and experiments aiming to understand how subjective assessments of print quality relate to objective measurements are explained. The obtained results show that the objective measures reflect important aspects of print quality, these measures are also modelled with reasonable accuracy using paper and press parameters. The models of objective  measures are shown to reveal relationships consistent to known print quality phenomena.

In the second part of this thesis the application area of anomaly detection in smart homes is explored. A method for modelling human behaviour patterns is proposed. The model is used in order to detect deviating behaviour patterns using contextual information from both time and space. The proposed behaviour pattern model is tested using simulated data and is shown to be suitable given four types of scenarios.

The thesis shows that parts of offset lithographic printing, which traditionally is a human-centered process, can be automated by the introduction of image processing and machine learning methods. Moreover, it is concluded that in order to facilitate robust and accurate anomaly detection in smart homes, a holistic approach which makes use of several contextual aspects is required.

Ort, förlag, år, upplaga, sidor
Halmstad: Halmstad University Press, 2014. s. 51
Serie
Halmstad University Dissertations ; 6
Nyckelord
Machine learning, Data mining, Colour printing, Smart homes
Nationell ämneskategori
Signalbehandling
Identifikatorer
urn:nbn:se:hh:diva-25318 (URN)978-91-87045-12-7 (ISBN)978-91-87045-11-0 (ISBN)
Disputation
2014-06-13, Wigforssalen, Visionen, Kristian IV:s väg 3, Halmstad, 13:15 (Engelska)
Opponent
Handledare
Projekt
PPQSA3L
Forskningsfinansiär
KK-stiftelsen
Tillgänglig från: 2014-05-09 Skapad: 2014-05-09 Senast uppdaterad: 2015-09-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Lundström, JensVerikas, Antanas

Sök vidare i DiVA

Av författaren/redaktören
Lundström, JensVerikas, Antanas
Av organisationen
Laboratoriet för intelligenta system
I samma tidskrift
Measurement
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 314 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf