hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ideas for Fault Detection Using Relation Discovery
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system.ORCID-id: 0000-0002-7796-5201
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system.
Volvo Group Trucks Technology, Göteborg, Sweden.ORCID-id: 0000-0001-8255-1276
2012 (Engelska)Ingår i: / [ed] Lars Karlsson and Julien Bidot, Linköping: Linköping University Electronic Press, 2012, s. 1-6Konferensbidrag, Enbart muntlig presentation (Refereegranskat)
Abstract [en]

Predictive maintenance is becoming more and more important in many industries, especially taking into account the increasing focus on offering uptime guarantees to the customers. However, in automotive industry, there is a limitation on the engineering effort and sensor capabilities available for that purpose. Luckily, it has recently become feasible to analyse large amounts of data on-board vehicles in a timely manner. This allows approaches based on data mining and pattern recognition techniques to augment existing, hand crafted algorithms.

Automated deviation detection offers both broader applicability, by virtue of detecting unexpected faults and cross-analysing data from different subsystems, as well as higher sensitivity, due to its ability to take into account specifics of a selected, small set of vehicles used in a particular way under similar conditions.

In a project called Redi2Service we work towards developing methods for autonomous and unsupervised relationship discovery, algorithms for detecting deviations within those relationships (both considering different moments in time, and different vehicles in a fleet), as well as ways to correlate those deviations to known and unknown faults. In this paper we present the type of data we are working with, justify why we believe relationships between signals are a good knowledge representation, and show results of early experiments where supervised learning was used to evaluate discovered relations.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2012. s. 1-6
Serie
Linköping Electronic Conference Proceedings, ISSN 1650-3740 ; 071
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:hh:diva-17718OAI: oai:DiVA.org:hh-17718DiVA, id: diva2:528136
Konferens
The 27th annual workshop of the Swedish Artificial Intelligence Society (SAIS), 14–15 May 2012, Örebro, Sweden
Projekt
Redi2ServiceTillgänglig från: 2012-05-25 Skapad: 2012-05-24 Senast uppdaterad: 2018-03-22Bibliografiskt granskad

Open Access i DiVA

ecp12071001(1257 kB)306 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1257 kBChecksumma SHA-512
05cc4fb16ec54ef64a89fc8f3bfacb34419c58fac8fdaaed87c5c64d15b87548be244bdba8cbcdfa5e220b765dd2274b31ef653896c26bb4499bbc235611122c
Typ fulltextMimetyp application/pdf

Personposter BETA

Nowaczyk, SławomirByttner, StefanPrytz, Rune

Sök vidare i DiVA

Av författaren/redaktören
Nowaczyk, SławomirByttner, StefanPrytz, Rune
Av organisationen
Laboratoriet för intelligenta system
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 306 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 423 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf