hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Questionnaire- versus voice-based screening for laryngeal disorders
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Intelligenta system (IS-lab).ORCID-id: 0000-0003-2185-8973
Department of Electrical and Control Equipment, Kaunas University of Technology, Kaunas, Lithuania.
Department of Electrical and Control Equipment, Kaunas University of Technology, Kaunas, Lithuania.
Department of Electrical and Control Equipment, Kaunas University of Technology, Kaunas, Lithuania.
Visa övriga samt affilieringar
2012 (Engelska)Ingår i: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 39, nr 6, s. 6254-6262Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The usefulness of questionnaire and voice data to screen for laryngeal disorders is explored. Answers to 14 questions form a questionnaire data vector. Twenty-three variables computed by the commercial "Dr.Speech" software from a digital voice recording of a sustained phonation of the vowel sound/a/constitute a voice data vector. Categorization of the data into a healthy class and two classes of disorders, namely diffuse and nodular mass lesions of vocal folds is the task pursued in this work. Visualization of data and automated decisions is also an important aspect of this work. To make the categorization, a support vector machine (SVM) is designed based on genetic search. Linear as well as nonlinear canonical correlation analysis (CCA) is employed, to study relations between the questionnaire and voice data sets. The curvilinear component analysis, performing nonlinear mapping into a two-dimensional space, is used for visualizing data and decisions. Data from 240 patients were used in the experimental studies. It was found that the questionnaire data provide more information for the categorization than the voice data. There are 3-4 common directions along which the statistically significant variations of the questionnaire and voice data occur. However, the linear relations between the variations occurring in the two data sets are not strong. On the other hand, very strong linear relations were observed between the nonlinear variates obtained from the questionnaire data and linear ones computed from the voice data. Questionnaire data carry great potential for preventive health care in laryngology. © 2011 Elsevier Ltd. All rights reserved.

Ort, förlag, år, upplaga, sidor
Amsterdam: Elsevier, 2012. Vol. 39, nr 6, s. 6254-6262
Nyckelord [en]
Canonical correlation analysis, SVM, Curvilinear component analysis, Genetic search, Laryngeal disorder, Query data
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:hh:diva-16879DOI: 10.1016/j.eswa.2011.12.037ISI: 000301013700015Scopus ID: 2-s2.0-84856517657OAI: oai:DiVA.org:hh-16879DiVA, id: diva2:474706
Tillgänglig från: 2012-01-09 Skapad: 2012-01-09 Senast uppdaterad: 2017-12-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Verikas, Antanas

Sök vidare i DiVA

Av författaren/redaktören
Verikas, Antanas
Av organisationen
Intelligenta system (IS-lab)
I samma tidskrift
Expert systems with applications
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 176 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf