hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Nonlinear relation mining for maintenance prediction
Örebro University.
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system.
Volvo Technology.
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system.ORCID-id: 0000-0001-5163-2997
2011 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper presents a method for mining nonlinear relationships in machine data with the purpose of using such relationships to detect faults, isolate faults and predict wear and maintenance needs. The method is based on the symmetrical uncertainty measure from information theory, hierarchical clustering and self-organizing maps. It is demonstrated on synthetic data sets where it is shown to be able to detect interesting signal relations and outperform linear methods. It is also demonstrated on real data sets where it is considerably harder to select small feature sets. It is also demonstrated on the real data sets that there is information about system wear and system faults in the detected relationships. The work is part of a long-term research project with the aim to construct a self-organizing autonomic computing system for self-monitoring of mechatronic systems.

Ort, förlag, år, upplaga, sidor
New York: IEEE Press, 2011. s. 1-9
Nyckelord [en]
fault detection, fault isolation, hierarchical clustering, information theory, machine data mining, maintenance prediction, mechatronic system, nonlinear relation mining, self organizing autonomic computing system, self organizing map, symmetrical uncertainty measurement, wear prediction
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:hh:diva-14596DOI: 10.1109/AERO.2011.5747581Scopus ID: 2-s2.0-79955787404ISBN: 978-1-4244-7350-2 OAI: oai:DiVA.org:hh-14596DiVA, id: diva2:404650
Konferens
IEEE Aerospace conference 2011, 5-12 march
Anmärkning

©2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Tillgänglig från: 2011-03-17 Skapad: 2011-03-17 Senast uppdaterad: 2018-03-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Byttner, StefanSvensson, MagnusRögnvaldsson, Thorsteinn

Sök vidare i DiVA

Av författaren/redaktören
Byttner, StefanSvensson, MagnusRögnvaldsson, Thorsteinn
Av organisationen
Laboratoriet för intelligenta system
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 303 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf