hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Selecting features from multiple feature sets for SVM committee-based screening of human larynx
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).ORCID-id: 0000-0003-2185-8973
Kaunas University of Technology.
Kaunas University of Technology.
Kaunas University of Technology.
2010 (Engelska)Ingår i: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 37, nr 10, s. 6957-6962Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper is concerned with a two stage procedure for designing a sequential SVM committee and selecting features for the committee from multiple feature sets. It is assumed that features of one type comprise one feature set. Selection of both features and hyper-parameters of SVM classifiers comprising the committee is integrated into one learning process based on genetic search. The designing process focuses on feature selection for pair-wise classification implemented by the SVM. In the first stage, a series of pair-wise SVM are designed starting from the original feature sets as well as from sets created by simple random selection from the original ones. Outputs of the SVM are then converted into probabilities and used as inputs to the second stage SVM. When testing the technique in a three-class classification problem of voice data, a statistically significant improvement in classification accuracy was obtained if compared to parallel committees. The number of feature types and features selected for the pair-wise classification are class specific.

Ort, förlag, år, upplaga, sidor
Elsevier, 2010. Vol. 37, nr 10, s. 6957-6962
Nyckelord [en]
Variable selection; Classification committee; Genetic search; Support vector machine; Human larynx
Nationell ämneskategori
Människa-datorinteraktion (interaktionsdesign)
Identifikatorer
URN: urn:nbn:se:hh:diva-5450DOI: 10.1016/j.eswa.2010.03.025ISI: 000279408200025Scopus ID: 2-s2.0-77950960199OAI: oai:DiVA.org:hh-5450DiVA, id: diva2:345730
Tillgänglig från: 2010-08-26 Skapad: 2010-08-26 Senast uppdaterad: 2018-01-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Verikas, Antanas

Sök vidare i DiVA

Av författaren/redaktören
Verikas, Antanas
Av organisationen
Halmstad Embedded and Intelligent Systems Research (EIS)
I samma tidskrift
Expert systems with applications
Människa-datorinteraktion (interaktionsdesign)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 177 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf