hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Neural Reinforcement Learning Approach for Behaviors Acquisition in Intelligent Autonomous Systems
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE).
2006 (engelsk)Independent thesis Advanced level (degree of Master (One Year))Oppgave
Abstract [en]

In this work new artificial learning and innate control mechanisms are proposed for application

in autonomous behavioral systems for mobile robots. An autonomous system (for mobile robots)

existent in the literature is enhanced with respect to its capacity of exploring the environment and

avoiding risky configurations (that lead to collisions with obstacles even after learning). The

particular autonomous system is based on modular hierarchical neural networks. Initially,the

autonomous system does not have any knowledge suitable for exploring the environment (and

capture targets œ foraging). After a period of learning,the system generates efficientobstacle

avoid ance and target seeking behaviors. Two particular deficiencies of the forme rautonomous

system (tendency to generate unsuitable cyclic trajectories and ineffectiveness in risky

configurations) are discussed and the new learning and controltechniques (applied to the

autonomous system) are verified through simulations. It is shown the effectiveness of the

proposals: theautonomous system is able to detect unsuitable behaviors (cyclic trajectories) and

decrease their probability of appearance in the future and the number of collisions in risky

situations is significantly decreased. Experiments also consider maze environments (with targets

distant from each other) and dynamic environments (with moving objects).

sted, utgiver, år, opplag, sider
Högskolan i Halmstad/Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) , 2006. , s. 5602764 bytes
Emneord [en]
Intelligent Autonomous Systems, Neural networks
Identifikatorer
URN: urn:nbn:se:hh:diva-287Lokal ID: 2082/583OAI: oai:DiVA.org:hh-287DiVA, id: diva2:237466
Uppsök
Technology
Tilgjengelig fra: 2006-11-28 Laget: 2006-11-28 Sist oppdatert: 2007-01-08

Open Access i DiVA

fulltekst(5471 kB)134 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 5471 kBChecksum MD5
a3a1aa661118370437d599ca1284888a3b68daa5b8f1f3f34f96ecb6e5ee34b2fca083b85007336dd8a2318f30d31d5f14974057aac401bae5e376c0b45fa9ec0f6c81bf9e2f1b5938819088f0fdfab5
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 134 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 376 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf