hh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automated methods for improved protein identification by peptide mass fingerprinting
Department of Protein Technology, Lund University, Lund, Sweden.
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).ORCID-id: 0000-0001-5163-2997
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE).
Department of Protein Technology, Lund University, Lund, Sweden.
2004 (Engelska)Ingår i: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 4, nr 9, s. 2594-2601Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In order to maximize protein identification by peptide mass fingerprinting noise peaks must be removed from spectra and recalibration is often required. The preprocessing of the spectra before database searching is essential but is time-consuming. Nevertheless, the optimal database search parameters often vary over a batch of samples. For high-throughput protein identification, these factors should be set automatically, with no or little human intervention. In the present work automated batch filtering and recalibration using a statistical filter is described. The filter is combined with multiple data searches that are performed automatically. We show that, using several hundred protein digests, protein identification rates could be more than doubled, compared to standard database searching. Furthermore, automated large-scale in-gel digestion of proteins with endoproteinase LysC, and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis, followed by subsequent trypsin digestion and MALDI-TOF analysis were performed. Several proteins could be identified only after digestion with one of the enzymes, and some less significant protein identifications were confirmed after digestion with the other enzyme. The results indicate that identification of especially small and low-abundance proteins could be significantly improved after sequential digestions with two enzymes.

Ort, förlag, år, upplaga, sidor
Wiley-VCH-Verlag , 2004. Vol. 4, nr 9, s. 2594-2601
Nyckelord [en]
Automation, Database searching, Mass spectrometry, Protein identification
Identifikatorer
URN: urn:nbn:se:hh:diva-224DOI: 10.1002/pmic.200300804ISI: 000223801300010PubMedID: 15352234Scopus ID: 2-s2.0-4444233697Lokalt ID: 2082/519OAI: oai:DiVA.org:hh-224DiVA, id: diva2:237402
Tillgänglig från: 2006-11-24 Skapad: 2006-11-24 Senast uppdaterad: 2017-12-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Rögnvaldsson, Thorsteinn

Sök vidare i DiVA

Av författaren/redaktören
Rögnvaldsson, Thorsteinn
Av organisationen
Halmstad Embedded and Intelligent Systems Research (EIS)Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE)
I samma tidskrift
Proteomics

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 213 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf