hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reduced effective temperature of hot electrons in nano-sized metal-oxide-semiconductor field-effect transistors
Physical Electronics and Photonics, Department of Physics, Chalmers University of Technology and Gothenburg University, Göteborg, Sweden.
Physical Electronics and Photonics, Department of Physics, Chalmers University of Technology and Gothenburg University, Göteborg, Sweden.
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).ORCID iD: 0000-0001-5027-1456
2003 (English)In: Applied Physics A: Materials Science & Processing, ISSN 0947-8396, E-ISSN 1432-0630, Vol. 77, no 6, p. 799-803Article in journal (Refereed) Published
Abstract [en]

Hot electron effects have been extensively studied in metal-oxide-semiconductor field-effect transistors (MOSFETs). The importance of these effects when the dimensions are drastically reduced has so far not been thoroughly investigated. The scope of this paper is therefore to present a detailed study of the effective temperature of excess electrons in nanoscale MOSFETs by solving coupled Schrödinger and Poisson equations. It is found that the increased doping levels and reduced junction depths lead to substantially higher local Fermi levels in the source and drain regions. As a result, the temperature difference between electrons injected into the drain and local electrons is reduced. The scaling of the gate oxide thickness, as well as the drain voltage furthermore reduces the electron temperature in the drain. The detrimental effects of hot electron injection are therefore expected to be decreased by scaling the MOSFET.

Place, publisher, year, edition, pages
Berlin / Heidelberg: Springer Berlin/Heidelberg, 2003. Vol. 77, no 6, p. 799-803
Keywords [en]
Electrons, Poisson equation, Quantum theory, Semiconductor junctions, Threshold voltage
National Category
Other Engineering and Technologies
Identifiers
URN: urn:nbn:se:hh:diva-202DOI: 10.1007/s00339-003-2200-yISI: 000185484800016Scopus ID: 2-s2.0-0042823841Local ID: 2082/487OAI: oai:DiVA.org:hh-202DiVA, id: diva2:237380
Available from: 2006-11-23 Created: 2006-11-23 Last updated: 2018-04-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Pettersson, Håkan

Search in DiVA

By author/editor
Pettersson, Håkan
By organisation
Halmstad Embedded and Intelligent Systems Research (EIS)
In the same journal
Applied Physics A: Materials Science & Processing
Other Engineering and Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 196 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf