Automotive interior components are produced by injection moulding due to its cost effectiveness in mass production. The surfaces of these components are textured to control the appearance and other surface functional properties such as wear and scratch resistance. Key challenges lie in replicating the features of mould tool with high aspect ratio which are influenced by the polymer and large number of process variables. Hence, to control the aesthetic properties, it is important to improve the understanding of the replication of textured surfaces and its relationship with measured gloss. In this study, the surface topography of PC-ABS samples is investigated using coherence scanning interferometry. Replication of two types- coarse and fine grain surface texture are investigated to identify the effects of tool temperature, injection speed and holding pressure. Areal surface parameters are scrutinized for the quantitative characterization and discrimination of study samples surface topographies. The correlations between process parameters, measured gloss and areal surface parameters are discussed. The results show significant influence of process variables on the replication of surface topography and measured gloss. The grain pattern governed the set of surface parameters selected and the variation in gloss. The process variables are observed to influence different region or distribution of specific surface features represented by surface parameters. © 2023 IOP Publishing Ltd.